Seberapa Besar Paparan Radiasi Dari Reaktor Daya Eksperimental?

Bagikan Artikel ini di:

Sebagaimana telah diketahui, Badan Tenaga Nuklir Nasional (BATAN) berencana untuk membangun Reaktor Daya Eksperimental (RDE) di kawasan Puspiptek Serpong. Ide ini muncul mengingat sulitnya untuk langsung membangun PLTN skala komersial di Indonesia. Sementara, tujuan utama dari program RDE adalah untuk mengembangkan kapabilitas nasional sebagai technology provider reaktor nuklir. Sehingga, alih-alih hanya sebagai pengguna, Indonesia juga bisa menjadi desainer, konstruktor, hingga operator sebuah PLTN [1].

Tentu saja program RDE hanya langkah awal, mengingat PLTN ini bersifat non komersial. Nantinya, RDE akan di-scale up ke daya yang lebih tinggi untuk keperluan komersial.

Gambar 1. Perencanaan Kawasan RDE

Rencana ini kedengaran bagus. Tapi mengapa dibangun di Puspiptek? Bukankah di sana pusat penelitian? Kan banyak orangnya? Selamat tidak nih? Nanti kena radiasinya bagaimana?

Baca juga: Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat

Kalau seandainya ada pertanyaan-pertanyaan seperti itu, mempertanyakan nasib penghuni Puspiptek dan penduduk Serpong bahkan Tangerang Selatan, maka BATAN sudah punya jawabannya. Riset yang dilakukan oleh para Peneliti di Pusat Teknologi dan Keselamatan Reaktor Nuklir (PTKRN) BATAN ini berfokus pada pelepasan radioaktivitas dan dosis radiasi di sekitar kawasan RDE dan Kawasan Nuklir Serpong (KNS) mengasumsikan RDE telah dibangun dan beroperasi.

Perlu diketahui terlebih dahulu bahwa RDE mengadopsi teknologi high temperature gas-cooled reactor (HTGR). Teknologi ini terkategori reaktor nuklir Generasi IV (GenIV), yang merupakan teknologi reaktor maju dengan berbagai keunggulan dibandingkan reaktor konvensional saat ini. HTGR menggunakan moderator grafit dan pendingin helium, sehingga memiliki densitas daya rendah. Bahan bakar HTGR merupakan pebble bed, dimana bola grafit diisi oleh ribuan partikel bahan bakar TRISO. Bentuk bahan bakar pebble bed menjamin retensi produk fisi maksimal. Sehingga, pelepasan material radioaktif ke lingkungan dapat diminimalisir [2-3].

Gambar 2. Struktur Bahan Bakar Pebble Bed

Baca juga: Mengukur Dampak Iklim Dari Pemanfaatan Energi Nuklir

Paparan radiasi lingkungan yang salah satu kontributornya adalah pelepasan material radioaktif merupakan pembahasan dari penelitian pertama, yang dilakukan oleh Pande Made Udiyani dkk [4]. Penelitian ini sebenarnya tidak hanya membahas tentang RDE, tetapi juga pelepasan dari Reaktor Serba Guna-G.A. Siwabessy, reaktor riset yang telah lama beroperasi di Kawasan Nuklir Serpong (KNS). Kalkulasi dosis radiasi yang diterima penduduk sekitar KNS (termasuk daerah Serpong dan Gunung Sindur) dari pelepasan sourceterm RSG-GAS dan RDE dibahas di sini.

Berdasarkan kalkulasi tersebut, diperoleh bahwa pelepasan radiasi dari RSG-GAS memberikan dosis radiasi yang diterima publik sebesar 9.31×10-4 mSv/tahun. Besar? Tentu saja tidak. Nilai Batas Dosis (NBD) yang ditetapkan Bapeten untuk dosis yang diterima oleh masyarakat sebesar 1 mSv/tahun. Artinya, dosis radiasi yang dilepaskan RSG-GAS tidak sampai seperseribunya [4]!

Tapi itu, kan, RSG-GAS. Bagaimana dengan RDE? Ternyata lebih rendah lagi. Dosis radiasi yang diterima publik dari RDE paling tinggi hanya 4.17×10-4 mSv/tahun, kurang dari setengah RSG-GAS. Hal ini bisa dipahami, mengingat daya termal RDE hanya sepertiga RSG-GAS, yakni 10 MW [4]. Jika ditotal, dosis tertinggi yang mungkin diterima oleh penduduk setempat adalah 6.16×10-3 mSv/tahun. Masih jauh lebih rendah daripada NBD yang ditetapkan Bapeten.

Tabel 1. Dosis individual total dari pelepasan radioaktif RDE

Artinya, paparan radiasi ke lingkungan akibat lepasan radioaktif bisa dikatakan minim dan tidak penting untuk ditakuti.

Baca juga: Seberapa Besar Radiasi Yang Dilepaskan PLTN Ke Lingkungan?

Bagaimana dengan pekerja di kawasan Puspiptek? Bukankah ketika beroperasi, RDE akan memancarkan radiasi gamma? Nah, penelitian dari Amir Hamzah dkk berikut ini menjawabnya [5].

Cara termudah untuk menentukan apakah paparan radiasi dari reaktor selamat atau tidak untuk pekerja Puspiptek adalah dengan menghitung paparan radiasi pada pekerja di dalam kawasan RDE itu sendiri. Karena merekalah yang paling dekat dengan reaktor. Pertanyaannya, berapa dosis radiasi yang mereka terima?

Hasil kalkulasi tersebut ditampilkan pada grafik berikut.

Gambar 3. Distribusi dosis radiasi di teras reaktor, perisai biologis, dan area kerja RDE

Tampak bahwa di tengah teras reaktor (sumbu x = 0) dosis radiasi sangat tinggi melebihi 109 µSv/jam. Artinya, siapapun yang terkena paparan radiasi sebesar itu akan mati secara instan atau langsung. Namun, ketika melewati perisai biologis yang terbuat dari beton standar, dosis radiasi turun sangat drastis sehingga dosis radiasi yang diterima pekerja tepat di permukaan luar perisai biologis hanya 8 µSv/jam. Angka ini lebih rendah daripada NBD yang ditentukan oleh Bapeten untuk pekerja radiasi, yakni 10 µSv/jam. Pada jarak 7 m dari permukaan luar perisai biologis, dosisnya turun hingga kira-kira 1 µSv/jam. Lebih rendah lagi [5].

Dengan begitu rendahnya dosis radiasi di sekitar perisai biologis reaktor, bisa dikatakan tidak ada radiasi gamma dari reaktor yang sampai ke kawasan Puspiptek. Sehingga tidak akan ada potensi bahaya yang disebabkan oleh paparan radiasi dari operasi normal RDE.

Menilik dari dua penelitian ini, maka jelas bahwa kondisi operasional RDE tidak memberikan dampak kesehatan apa-apa pada masyarakat. Apalagi, memang tidak ada dampak radiasi yang bisa dideteksi pada dosis radiasi dibawah 100 mSv dalam waktu singkat [6-8]. Mengingat NBD yang ditetapkan Bapeten hanya 1 mSv/tahun untuk masyarakat, dan dosis tertinggi yang diterima masyarakat jauh lebih rendah dari itu, tidak ada kekhawatiran yang perlu dipikirkan oleh pekerja di kawasan Puspiptek apalagi penduduk Serpong.

Referensi:

  1. Topan Setiadipura et al. “Cooling passive safety features of Reaktor Daya Eksperimental,” AIP Conference Proceedings 1984, 020034 (2018).
  2. Andika Putra Dwijayanto dan Muhammad Subekti. “Preliminary Study of Temperature Homogenisation in Experimental Power Reactor Hot Gas Chamber.” Journal of Physics: Conference Series 1198, 022019 (2019).
  3. Ihda Husnayani dan Pande Made Udiyani. “Radionuclide Characteristics of RDE Spent Fuels.” Jurnal Teknologi Reaktor Nuklir, Vol. 20, No. 2, pp. 69-76 (2018).
  4. Pande Made Udiyani et al. “Atmospheric Dispersion Analysis for Expected Radiation Dose due to Normal Operation of RSG-GAS and RDE Reactors.” Atom Indonesia, Vol. 44, No. 3, pp. 115-121 (2018).
  5. Amir Hamzah et al. “Preliminary analysis of dose rates distribution of experimental power reactor 10 MW using MCNP.” Journal of Physics: Conference Series 1198, 022038 (2019).
  6. Wade Allison. Radiation and Reason. York: Wade Allison Publishing (2009).
  7. David Bodansky. Nuclear Energy: Principles, Practices, and Prospects 2nd Edition. New York: Springer-Verlag (2004).
  8. World Nuclear Association. Nuclear Radiation and Health Effects. (http://www.world-nuclear.org/information-library/safety-and-security/radiation-and-health/nuclear-radiation-and-health-effects.aspx), diakses 12 Juni 2019.
Bagikan Artikel ini di:

Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat, Bukan Sebaliknya

Bagikan Artikel ini di:

Tidak ada argumen yang lebih sering digunakan untuk menolak energi nuklir selain kecelakaan Chernobyl. Kecelakaan PLTN yang terjadi pada tahun 1986 ini menjadi senjata utama bagi kaum anti-nuklir untuk menunjukkan betapa bahayanya energi nuklir bagi kehidupan manusia. Kata “radiasi” pun seolah menjadi momok yang mengerikan bagi publik.

Gambar 1. PLTN Chernobyl, Unit 1 paling dekat, Unit 4 paling jauh (sumber: ANS Nuclear Cafe)

Patut diakui bahwa kecelakaan PLTN Chernobyl adalah kecelakaan parah, dan tidak ada yang berharap kecelakaan sejenis itu terulang lagi. Tapi menjadikan kecelakaan PLTN Chernobyl sebagai bukti bahayanya energi nuklir adalah sama sekali tidak beralasan. Sebaliknya, justru kecelakaan PLTN Chernobyl adalah bukti bahwa energi nuklir itu sangat selamat.

Ada beberapa alasan yang melandasinya. Pertama. PLTN Chernobyl menggunakan desain reaktor yang secara alamiah buruk, yakni RBMK (reaktor bolshoy moshchnosty kanalny/reaktor kanal daya tinggi). Berbeda dengan reaktor nuklir pada umumnya, RBMK menggunakan moderator netron dan pendingin terpisah; moderator berupa grafit dan pendingin air [1]. Tujuan penggunaan pendingin dan moderator terpisah adalah supaya bahan bakar dapat diganti ketika reaktor beroperasi. Hal ini sangat penting karena Uni Soviet kala itu menggunakan PLTN tipe RBMK untuk memproduksi bahan baku senjata nuklir.

Gambar 2. Desain skematik RBMK (sumber: WNA)

Masalahnya, penggunaan moderator grafit dan pendingin air membuat reaktor memiliki masalah yang melekat; reaktivitas void RBMK bernilai sangat positif. Artinya, ketika terjadi kehampaan (void) dalam reaktor, misalkan karena air pendingin menguap terlalu banyak, daya reaktor akan naik alih-alih turun [1]. Sementara, pada reaktor lain, daya reaktor akan turun ketika terjadi void dalam reaktor (reaktivitas void negatif) [2]. Bahkan para insinyur nuklir Soviet pun sudah paham masalah ini, tapi kemudian diabaikan oleh pemerintah [3]. Hal ini, ditambah dengan berbagai cacat lain pada desainnya, berkontribusi dalam menyebabkan kecelakaan PLTN Chernobyl.

Tidak ada reaktor nuklir yang menggunakan teknologi RBMK di luar bekas negara Uni Soviet. Tipe reaktor nuklir yang paling banyak digunakan saat ini, LWR (light water reactor) memiliki reaktivitas void negatif. Cacat alamiah desain tidak akan ditemukan di LWR yang mendominasi lebih dari 80% reaktor nuklir di dunia. Bahkan, sisa-sisa RBMK di Rusia sudah dimodifikasi agar lebih selamat.

Baca juga: Keunggulan PLTN Terapung Untuk Indonesia

Kedua, dengan berbagai cacat alamiah tersebut, sebenarnya PLTN Chernobyl Unit 4 tidak akan mengalami kecelakaan tersebut seandainya operator dan supervisor tidak melanggar berlapis-lapis protokol keselamatan. Pada saat itu, reaktor dioperasikan dalam kondisi yang tidak mungkin tercapai dalam kondisi operasional. Seluruh sistem keselamatan dimatikan tetapi reaktor dioperasikan dalam keadaan sangat berbahaya, bahkan dilarang oleh peraturan Uni Soviet sendiri [4].

Faktor terbesar kecelakaan PLTN Chernobyl Unit 4 adalah human error. Karena sekalipun teknologi yang digunakan sangat cacat, kecelakaan itu tidak akan terjadi jika operator dan supervisor tidak bertindak ceroboh.

Ketiga, ledakan uap dan hidrogen yang terjadi menyebabkan 5% material nuklir terhambur dari dalam reaktor ke lingkungan. Api yang menyambar grafit moderator menyebabkan kebakaran yang membawa debu radioaktif ke berbagai bagian Eropa. Namun, total kematian yang disebabkan oleh kecelakaan ini hanya ± 60 orang. Operator dan supervisor tewas dalam ledakan, 28 orang pemadam kebakaran/likuidator tewas akibat acute radiation sickness (ARS), sementara sisanya karena mengidap kanker tiroid akibat meminum susu yang terkontaminasi I-131 dan tidak bisa terselamatkan [5].

Sempat diproyeksikan bahwa akan ada sekitar 4000 kematian susulan sebagai akibat paparan radiasi dari kecelakaan tersebut. Namun, laporan UNSCEAR tahun 2008 menegasikan proyeksi itu, mengatakannya sebagai, “Tidak bisa dibedakan dengan kematian biasa…” [5] Sehingga, angka kematian di atas bisa dikatakan final.

Dibandingkan dengan 300 ribu orang tewas tiap tahunnya di Cina akibat polusi PLTU batubara [6], angka kematian akibat kecelakaan PLTN Chernobyl Unit 4 ini tentu sangatlah sedikit.

Baca juga: Mengenal Reaktor Daya Eksperimental, Reaktor Nuklir Desain Anak Negeri

Keempat, PLTN Chernobyl yang mengalami kecelakaan hanya Unit 4. Sementara, Unit 1-3 tidak terdampak. Pasca kecelakaan, PLTN Chernobyl Unit 1-3 masih tetap dioperasikan, sebelum unit terakhir ditutup permanen pada tahun 2000 [1]. Hal ini menarik, karena kecelakaan PLTN terparah yang mungkin terjadi pun ternyata tidak memengaruhi unit-unit yang berada di sekitarnya!

Kelima, kota Pripyat dan Chernobyl nyatanya tidak menjadi sejenis nuclear wasteland. Memang kedua kota itu ditinggalkan dan tidak banyak yang manusia tinggal di sekitar sana, tapi alih-alih menjadi lahan tandus, hewan-hewan dan tumbuhan tumbuh dan berkembangbiak dengan subur [7]. Bahkan kedua kota itu menjadi destinasi wisata sejak 2011, dan baik-baik saja untuk dikunjungi. Apakah keberadaan manusia justru berdampak lebih negatif pada alam Chernobyl dibandingkan kecelakaan PLTN?

Orang-orang yang hidup di Chernobyl (tepi zona ekslusi), di tahun 2018 ada sekitar 150 orang yang hidup di zona tersebut, Sumber: BBC

Keenam, level radiasi di kawasan Chernobyl dan negara sekitarnya relatif rendah. Pengukuran dosis radiasi yang dilakukan UNSCEAR menunjukkan bahwa, pada rentang tahun 1986-2005, di daerah yang paling terkontaminasi, dosis yang diterima penduduk rerata sekitar 2,4 mSv di Belarusia, 1,1 mSv di Rusia dan 1,2 mSv di Ukraina. Sebagai perbandingan, rerata dosis radiasi tahunan di bumi adalah 2,4 mSv/tahun. Selain itu, beberapa daerah memiliki radiasi latar jauh lebih tinggi dari angka ini, misalnya Kerala, India (70 mSv/tahun) dan Ramsar, Iran (400 mSv/tahun) [8,9].

Gambar 3. Pengukuran radiasi di stadion olahraga 4 km dari reaktor Chernobyl pada tahun 2008. Dosis radiasi terukur 2,8 µSv/jam, atau 2,5 mSv/tahun (sumber: Jaworowski, 2009)

Kecelakaan nuklir terparah sekalipun tidak menyebabkan paparan radiasi eksternal fatal pada masyarakat.

Baca juga: Seberapa Besar Radiasi Yang Dilepaskan PLTN Ke Lingkungan?

Ketujuh, kecelakaan PLTN Chernobyl adalah satu-satunya kecelakaan PLTN yang menyebabkan korban jiwa selama sejarah operasionalnya, dengan jumlah korban minimal. Bahkan sekalipun mempertimbangkan angka “4000 kematian tambahan” yang sudah dikoreksi oleh UNSCEAR, tingkat kematian yang disebabkan nuklir masih yang paling rendah dibandingkan moda energi lainnya seperti ditunjukkan oleh gambar berikut[10]

Gambar 4. Jumlah kematian per TWh energi (diolah dari Nextbigfuture)

Demikianlah tujuh alasan mengapa kecelakaan PLTN Chernobyl justru menunjukkan bahwa energi nuklir merupakan energi yang selamat, bahkan paling selamat dibanding moda energi lainnya. Secara praktis, kecelakaan dengan level setara dengan PLTN Chernobyl Unit 4 tidak mungkin terjadi lagi. Padahal, untuk menyamai level bahaya yang diakibatkan PLTU batubara, kecelakaan selevel Chernobyl perlu terjadi 4 kali setiap jam. Ya, 4 Chernobyl tiap jam atau 1 Chernobyl tiap 15 menit harus terjadi agar dampak energi nuklir seburuk energi batubara. Mungkinkah hal itu terjadi, sementara 400 GWe PLTN dalam operasi saat ini masih beroperasi baik-baik saja?

Referensi:

  1. World Nuclear Association. Chernobyl Accident 1986. (http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/chernobyl-accident.aspx). Diakses 28 Februari 2019.
  2. Max Carbon. 2006. Nuclear Power, Villain or Victim? Our Most Misunderstood Source of Electricity. Madison: Pebble Beach Publisher.
  3. Douglas E. Hardtmayer. Five Things You Probably Didn’t Know About Chernobyl. (http://ansnuclearcafe.org/2018/04/26/five-things-you-probably-didnt-know-about-chernobyl/). Diakses 11 Maret 2019.
  4. Bernard L Cohen. 1990. The Nuclear Energy Option. Pittsburgh: Plenum Press.
  5. United Nations Scientific Committee on the Effects of Atomic Radiation. 2011. Sources and Effects of Ionizing Radiation Volume II Annex D. New York: UNSCEAR.
  6. James Conca. Pollution Kills More People Than Anything Else. (https://www.forbes.com/sites/jamesconca/2017/11/07/pollution-kills-more-people-than-anything-else/#7b8446451a35). Diakses 28 Februari 2019.
  7. G. Deryabina et al. 2015. “Long-term census data reveal abundant wildlife populations at Chernobyl”.Current Biology, vol. 25, pp. 824-826.
  8. Geoff Russell. What can we learn from Kerala? (https://bravenewclimate.com/2015/01/24/what-can-we-learn-from-kerala/). Diakses 11 Maret 2019.
  9. Zbigniew Jaworowski. 2010. “Observations on Chernobyl After 25 Years of Radiophobia”. 21st Century Science & Technology, Summer 2010, pp 30-45.
  10. Brian Wang. Update of Death per Terawatt hour by Energy Source. (https://www.nextbigfuture.com/2016/06/update-of-death-per-terawatt-hour-by.html). Diakses 28 Februari 2019.
Bagikan Artikel ini di:

Keunggulan Pembangkit Listrik Tenaga Nuklir (PLTN) Terapung Untuk Indonesia

Bagikan Artikel ini di:

Pengembangan PLTN selama ini utamanya berfokus di PLTN darat. Mengingat, kebutuhan listrik utamanya memang di darat, bukan di laut. Demikian pula, perencanaan pembangunan PLTN di Indonesia selalu difokuskan untuk dibangun di darat. Hal ini logis ketika mempertimbangkan pulau-pulau besar yang butuh listrik dengan suplai besar.

Namun, bagaimana dengan pulau-pulau kecil yang membutuhkan suplai listrik yang andal? Ditambah lagi potensi bencana gempa dan tsunami yang sewaktu-waktu dapat menyerang negeri ini [1,2].

Dari sini, prospek PLTN terapung tampak cukup menjanjikan.

Ada beberapa jenis PLTN terapung. Namun, dari jenis-jenis yang ada, jenis offshore nuclear power plant (ONPP) tampak paling cocok untuk kawasan Indonesia [3]. PLTN terapung jenis ini memiliki unit reaktor nuklir (tunggal atau ganda) dan unit pembangkit yang dipasang di dalam kapal/tongkang. Listrik yang dibangkitkan oleh unit PLTN ini dapat digunakan untuk menggerakkan kapal dari dan menuju lokasi penggunaan, serta dialirkan ke jaringan listrik di lokasi tersebut.

Gambar 1. Konsep PLTN terapung MIT

Baca juga: Milestone Nuklir Cina: EPR dan AP1000 Pertama Di Dunia Mulai Beroperasi

PLTN yang dipasang di dalam kapal bukan konsep baru. Rusia sudah sejak lama menggunakan reaktor nuklir untuk propulsi kapal pemecah es [4]. Namun, ide ini kemudian berkembang untuk menyuplai listrik di daratan yang sulit terjangkau.

Ada beberapa potensi keunggulan dari penggunaan PLTN terapung untuk wilayah Indonesia.

Pertama, karena dipasang di atas kapal, kendala-kendala tentang pembebasan lahan dan sindrom NIMBY (Not In My Back Yard atau asal tidak di halaman belakang rumahku ) secara praktis tidak ada. Instalasi yang terpasang di darat hanya sambungan ke jaringan listrik saja. Isu fault teknonik yang menjadi perhatian dalam pembangunan PLTN pun otomatis lenyap. Gempa tidak lagi menjadi isu yang bisa dieksploitasi kalangan anti-nuklir.

Kedua, PLTN terapung dapat menjangkau kawasan-kawasan kepulauan kecil dan wilayah yang sulit dijangkau melalui darat, seperti beberapa kawasan di Papua. Karena PLTN terapung sudah dibangun dan terpasang di kapal sejak sebelum pemberangkatan, tidak ada pembangunan yang perlu dilakukan di kepulauan kecil dan wilayah yang sulit terjangkau tersebut selain fasilitas sambungan jaringan listrik. Jauh lebih memudahkan daripada harus membangun pembangkit di lokasi.

Kebutuhan bahan bakar nuklir sedikit dan siklus operasinya panjang, sekitar 24-36 bulan [5]. Jadi, bahan bakar untuk 10-20 tahun operasi dapat dimuat di dalam kapal. Atau, untuk alasan keamanan, bahan bakar baru dikirim ke lokasi menjelang akhir siklus bahan bakarnya. Sehingga, suplai bahan bakar sama sekali bukan masalah bagi PLTN terapung.

Baca juga: Mengenal Lebih Dekat Reaktor Daya Eksperimental, Reaktor Nuklir Desain Anak Negeri

Ketiga, PLTN terapung umumnya memiliki daya kecil, antara 35-120 MWe [6]. Daya itu cukup untuk daerah-daerah luar Jawa yang kebutuhan listriknya tidak sebanyak di Jawa. Membangun PLTN darat dengan daya lebih dari 250 MWe jelas sebuah pemborosan yang tidak perlu, jadi PLTN terapung memiliki skala rentang daya lebih pas.


Gambar 2. Konfigurasi reaktor PLTN terapung KLT40S

Keempat, lebih selamat dari tsunami. Sifat gelombang tsunami adalah baru mulai meninggi ketika mencapai air dangkal, tapi di air yang lebih dalam nyaris tidak terasa. Karena panjang gelombang tsunami di permukaan laut dalam sangat panjang, amplitudonya jadi kecil [7]. Sehingga, PLTN terapung yang doknya berada di permukaan laut dalam tidak akan terpengaruh oleh gelombang tsunami.

Eksistensi PLTN terapung pun berpotensi membantu peringatan dini tsunami. Sistem instrumentasi pendeteksi dini tsunami dapat dipasang di PLTN terapung. Karena tidak ada masyarakat yang bisa begitu saja naik ke atas kapal pengangkut PLTN ini, vandalisme dan pencurian terhadap komponen sistem peringatan dini tsunami bisa dikatakan tidak akan terjadi. Namun, hal ini butuh konfirmasi dari pakar di bidangnya.

Kelima, PLTN terapung dapat digunakan untuk desalinasi air laut. Hal ini penting untuk wilayah-wilayah yang sering kekurangan air bersih. Selain membangkitkan listrik, panas buangan dari PLTN terapung bisa digunakan untuk desalinasi air laut, menghasilkan air bersih yang layak digunakan untuk keperluan sehari-hari masyarakat [8].

Ke depannya, selain desalinasi air laut, PLTN terapung berpotensi juga memproduksi bahan bakar sintetis. Jadi, PLTN terapung digunakan untuk hidrolisis air dan memisahkan CO2 dari air laut. Hidrogen dan CO2 yang dihasilkan kemudian disintetis untuk menghasilkan bahan bakar mirip bensin untuk keperluan transportasi [9]. Keunggulan dari bahan bakar sintetis ini adalah netral emisi CO2 dan tidak ada kontamintasi pengotor.

Baca juga: Thorium, Bahan Bakar Nuklir Masa Depan

Keenam, level keselamatan tinggi. Kontras dengan asumsi sebagian orang ketika pertama mendengar PLTN terapung, tingkat keselamatannya tidak berkurang, malah mungkin lebih baik. Setidaknya, dari segi termohidrolik. Karena posisinya berada di atas permukaan laut, PLTN terapung memiliki akses pendingin yang secara praktis tidak terbatas. Air laut menjadi heat sink alami bagi reaktor nuklirnya. Ketika misalnya terjadi overheating, pendinginan reaktor dapat dilakukan tanpa harus khawatir kekurangan suplai pendingin eksternal.

Bagaimana kalau terjadi sebuah skenario tidak diinginkan yang menyebabkan kapalnya tenggelam? Bahan bakar nuklir akan tetap tersegel di dalam reaktor. Lalu, air laut secara otomatis akan mendinginkan reaktor sehingga pelelehan bahan bakar dapat dicegah (kecuali reaktor nuklir yang bahan bakarnya berbentuk lelehan, maka bahan bakarnya akan memadat). Ketiadaan pelelehan menyebabkan pelepasan radioaktivitas akan sangat minim, kalau bukan tidak ada. Air laut tidak akan terkontaminasi material radioaktif dari reaktor nuklir yang tenggelam.

Rusia dan Cina tengah mengembangkan PLTN terapung tipe ONPP [6]. Akademik Lomonosov, kapal bertenaga nuklir desain Rusia, diproyeksikan menjadi PLTN terapung pertama di dunia. Saat ini, Akademik Lomonosov telah melakukan pemuatan bahan bakar di dalam unit reaktor nuklir gandanya, siap diberangkatkan akhir tahun ini atau awal tahun depan ke Pevek, kota paling utara di Rusia [10].

Gambar 3. Akademik Lomonosov

Baca juga: Apa Benar Nuklir Mahal? Tanggapan Untuk Arcandra Tahar

Namanya teknologi, pasti ada saja kekurangannya. Karena tidak ada perimeter seperti di PLTN darat, sistem proteksi fisik PLTN terapung harus lebih diperhatikan. Masalah proteksi fisik sebaiknya juga dikoordinasikan dengan TNI. Perawatan pun mengharuskan si kapal dibawa kembali ke pabrikannya, walau memang jadwal perawatannya tidak sering. Masalah keselamatan radiasi juga mesti disosialisasikan dengan baik pada nelayan-nelayan yang melaut di sekitar sana, jika ada. Tujuannya supaya resistensi masyarakat sekitar terhadap PLTN terapung bisa diminimalisir dan tidak mudah diprovokasi oleh kalangan anti-nuklir.

Keunggulan-keunggulan di atas menunjukkan bahwa PLTN terapung sangat potensial untuk menyediakan listrik yang murah, bersih, selamat dan handal bagi penduduk Indonesia khususnya di luar Jawa, di daerah-daerah kepulauan dan wilayah yang sulit dijangkau lewat darat. Semoga dalam waktu tidak terlalu lama, kita bisa mengembangkannya sendiri menggunakan teknologi reaktor nuklir termutakhir, sehingga pemanfaatannya jadi lebih optimal untuk berbagai keperluan.

Referensi:

  1. S. Rohadi, “Studi Seismotektonik Sebagai Indikator Gempa Bumi di Wilayah Indonesia”, Jurnal Meteorologi dan Geofisika, vol. 10 no. 2, 2009, pp. 111-120.
  2. L. Hamzah et al, “Tsunami Catalog and Zones in Indonesia”, Journal of Natural Disaster Science, vol. 22 no. 1, 2000, pp. 25-43.
  3. K. H. Lee, “Recent Advances in Ocean Nuclear Power Plants”, Energies, vol. 8, 2015, pp. 11470-11492.
  4. O. Bukharin, “Russia’s Nuclear Icebreaker Fleet”, Science and Global Security, vol. 14, 2006, pp. 25-31.
  5. M. R. Oktavian et al, “Cogeneration Power-Desalination in Small Modular Reactors (SMRs) for Load Following in Indonesia”, presented in The 4th International Conference on Science and Technology (ICST) 2018, Yogyakarta, Indonesia.
  6. S. Banoori et al, Advances in Small Modular Reactor Technology Developments. IAEA, Vienna, 2016.
  7. Tsunamis. Diakses dari http://earthsci.org/education/teacher/basicgeol/tsumami/tsunami.html
  8. S. Nisan et al, “Sea-water desalination with nuclear and other energy sources: the EURODESAL project”, Nuclear Engineering and Design, vol. 221 no. 1-3, 2003, pp. 251-275.
  9. J. Morgan, Zero emission synfuel from seawater, Diakses dari https://bravenewclimate.com/2013/01/16/zero-emission-synfuel-from-seawater/\
  10. World Nuclear News. Russia loads fuel into floating power plant. Diakses dari (http://www.world-nuclear-news.org/Articles/Russia-loads-fuel-into-floating-power-plant)

 

Bagikan Artikel ini di: