Bagaimana Jika Investasi Energi Terbarukan Dialihkan Ke Energi Nuklir?

Ditengah isu perubahan iklim yang makin menguat dan polusi udara yang makin parah, usaha-usaha peralihan dari energi fosil ke energi bersih terus dilakukan. Dari moda energi bersih yang ada, energi terbarukan mendapat sorotan paling besar. Panel surya dan turbin angin dianggap menjadi Messiah bagi planet bumi.

Jerman dengan percaya diri menjalankan program Energiewende, yang mana mereka berniat menggantungkan diri hanya pada energi terbarukan dibarengi dengan meninggalkan energi nuklir sama sekali pada tahun 2022 [1]. Tidak ketinggalan, Mark Z. Jacobson, professor Teknik Sipil dari Stanford University, membuat peta jalan (roadmap) untuk menuju Amerika Serikat dengan 100% energi terbarukan [2]. Proposal Jacobson malah lebih nekad; tidak mau mengandalkan energy storage dan lebih banyak mengandalkan variabilitas angin di berbagai wilayah Amerika Serikat.

Seberapa layak konsep tersebut? Entahlah. Konsep Jacobson sendiri sudah dipersoalkan oleh Prof. Barry Brook dkk [3]. Energiewende pun pelaksanaannya cenderung bermasalah. Walau biaya yang dikeluarkan mencapai USD 580 milyar, nyatanya Jerman dipastikan gagal mencapai target reduksi emisi tahun 2020 [4].

Baca juga: Membongkar Mitos Negative Pricing Listrik Jerman

Sejak tahun 2000 hingga 2016, sektor energi terbarukan mendapatkan investasi dengan nilai mencapai USD 4 trilyun, dengan perincian USD 3 trilyun untuk sektor pembangkitan dan USD 1 trilyun untuk upgrade jaringan listrik [5]. Hal terakhir dibutuhkan karena sifat energi terbarukan yang intermittent mengharuskan adanya perubahan dalam jaringan listrik, supaya tidak jebol. Bagaimana hasilnya?

Tahun 2016, energi terbarukan menghasilkan listrik sebesar 1844.6 TWh. Angka ini sudah termasuk biomassa, yang strictly speaking tidak pas dikategorikan dalam energi bersih. Sementara, pembangkitan listrik di dunia mencapai 24.930,2 TWh [6]. Artinya, energi terbarukan memiliki bauran 7,4% dari pembangkitan listrik global. Dengan nilai investasi total USD 4 trilyun, berarti tiap milyar USD yang dikeluarkan sejak tahun 2000 berkontribusi terhadap kenaikan 0,00185% bauran listrik dunia.

Dengan bauran energi terbarukan masih kurang dari 10% bauran listrik dunia, nilai investasi sebesar itu terasa tidak terlalu worth it.

Baca juga: Keunggulan PLTN Terapung Untuk Indonesia

Bagaimana jika, seandainya, nilai investasi tersebut dialihkan pada nuklir?

PLTN Cattenom, Prancis (sumber: Wikipedia)

Walau selama ini telah sukses menyediakan energi rendah karbon yang tersedia tiap saat, persepsi tentang nuklir masih belum terlalu bersahabat. Masih banyak yang menganggap nuklir itu tidak selamat dan limbahnya berbahaya, walau fakta mengatakan sebaliknya [7,8]. Selain itu, mitos yang berkembang juga bahwa energi nuklir itu mahal, walau faktanya tidak selalu demikian [9].

Kembali ke pertanyaan, bagaimana jika USD 4 trilyun itu dialihkan ke nuklir?

Estimasi biaya pembangunan PLTN bervariasi, dari yang rendah hingga tinggi. Di sini, coba dihitung dalam dua skenario. Pertama, skenario Amerika Serikat. US Energy Information Administration (EIA) mengestimasikan bahwa overnight cost PLTN berkisar USD 5.224/kW [10]. Kedua, skenario Korea Selatan. Proyek PLTN Shin Kori Unit 3 dan 4 memakan biaya total hingga USD 6,46 milyar untuk daya 2.700 MW, sehingga overnight cost dari PLTN ini berkisar USD 2.400/kW [11].

Kenapa skenario Korea Selatan jauh lebih rendah biayanya daripada skenario Amerika Serikat? Ada banyak faktor, yang mungkin paling berpengaruh adalah standardisasi desain. PLTN yang dibangun oleh Korea Selatan dikembangkan dengan desain yang terstandar, tidak berubah-ubah dari satu tempat dan tempat lain. Dari sana, mereka mampu melaksanakan pembangunan secara efisien dan kemudian biaya yang lebih rendah [12].

Menggunakan skenario Amerika Serikat, dana USD 4 trilyun dapat dikonversi menjadi PLTN dengan kapasitas 765.7 GW. Best practice operasional PLTN di Amerika Serikat memberikan angka faktor kapasitas lebih dari 90% [13]. Untuk asumsi konservatif, diambil angka 85%. Dari sini, PLTN diketahui mampu membangkitkan daya 5.701,38 TWh tiap tahunnya, atau setara dengan 22,87% bauran listrik dunia.

Dengan skenario energi nuklir mahal sekalipun, bauran nuklir yang dihasilkan hampir tiga kali lipat energi terbarukan!

Baca juga: Mengukur Dampak Iklim Dari Pemanfaatan Energi Nuklir

Sementara, menggunakan skenario Korea Selatan, dana USD 4 trilyun dikonversi menjadi PLTN dengan kapasitas terpasang 1.666,7 GW. Dengan faktor kapasitas sama, mampu dibangkitkan 12.410 TWh tiap tahunnya, atau 49,78% bauran listrik dunia. Pada skenario ini, energi nuklir menjadi bauran energi tertinggi dalam pembangkitan listrik. Faktanya, pembangkitan daya sebesar ini cukup untuk sepenuhnya menggantikan penggunaan batubara dan minyak bumi dalam pembangkitan listrik dunia!

Tahun 2016, nuklir membangkitkan 2.612,8 TWh listrik, atau setara dengan 10,48% bauran listrik dunia [6]. Jika ditambah dengan skenario Amerika Serikat, bauran listrik total akan naik menjadi 33,35%. Mengompensasi kehilangan energi terbarukan karena perpindahan aliran investasi, angka ini cukup untuk menggantikan 68,5% pembangkitan listrik dari batubara. Sementara, pada skenario Korea Selatan, ditambah dengan PLTN yang sudah ada, baurannya menjadi 60,26%. Angka ini mampu menggantikan 86,1% listrik dari batubara dan gas alam sekaligus!

Dari sini, tampak jelas bahwa, sekalipun menggunakan skenario mahal, energi nuklir lebih efektif dan efisien untuk membersihkan jaringan listrik dari energi polutif. Dengan skenario murah, PLTN secara efektif mampu menggantikan hampir 90% pembangkitan listrik dari batubara dan gas alam, yang notabene merupakan penyumbang emisi CO2 dan polusi terbesar dalam sektor kelistrikan.

Seandainya para investor itu memilih teknologi yang tepat dalam transisi menuju energi bersih, maka tentulah problematika perubahan iklim dan polusi udara akan lebih mudah teratasi. Sayang sekali, ketakutan irasional terhadap energi nuklir membuat usaha mitigasi perubahan iklim dan polusi udara jadi jauh lebih mahal tanpa hasil berarti.

Referensi:

  1. Germany’s Energiewende – The Easy Guide. Available online at https://www.cleanenergywire.org/easyguide
  2. Mark Z. Jacobson et al. 2017. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule (1): 108-121.
  3. Ben P. Heard et al. 2017. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews (76): 1122-1133.
  4. Frank Dohmen et al. German Failure on the Road to a Renewable Future. Available online at https://www.spiegel.de/international/germany/german-failure-on-the-road-to-a-renewable-future-a-1266586.html
  5. Roger Andrews. Worldwide investment in renewable energy reaches US$ 4 trillion – with little to show for it. http://euanmearns.com/worldwide-investment-in-renewable-energy-reaches-us-4-trillion-with-little-to-show-for-it/
  6. British Petroleum. 2018. BP Statistical Review of World Energy June 2018. London: BP.
  7. R Andika Putra Dwijayanto. Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat, Bukan Sebaliknya. Available online at https://warstek.com/2019/03/16/chernobylnpp/
  8. R Andika Putra Dwijayanto. Bagaimana Pengelolaan Limbah Radioaktif PLTN? Available online at https://warstek.com/2018/04/10/limbahpltn/
  9. R Andika Putra Dwijayanto. Apa Benar Nuklir Mahal? Tanggapan Untuk Arcandra Tahar. Available online at https://warstek.com/2018/04/21/listriknuklir/
  10. US EIA. Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2019. Available online at https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf
  11. Final decision nearing on ending construction of Shin-Kori 5, 6 reactors. Available online at http://english.hani.co.kr/arti/english_edition/e_national/813938.html
  12. Michel Berthelemy, Lina Escobar Rangel. 2015. Nuclear reactors’ construction costs: The role of lead-time, standardization and technological progress. Energy Policy (82): 118-130.
  13. US EIA. Electric Power Monthly. Available online at: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b

Seberapa Besar Paparan Radiasi Dari Reaktor Daya Eksperimental?

Sebagaimana telah diketahui, Badan Tenaga Nuklir Nasional (BATAN) berencana untuk membangun Reaktor Daya Eksperimental (RDE) di kawasan Puspiptek Serpong. Ide ini muncul mengingat sulitnya untuk langsung membangun PLTN skala komersial di Indonesia. Sementara, tujuan utama dari program RDE adalah untuk mengembangkan kapabilitas nasional sebagai technology provider reaktor nuklir. Sehingga, alih-alih hanya sebagai pengguna, Indonesia juga bisa menjadi desainer, konstruktor, hingga operator sebuah PLTN [1].

Tentu saja program RDE hanya langkah awal, mengingat PLTN ini bersifat non komersial. Nantinya, RDE akan di-scale up ke daya yang lebih tinggi untuk keperluan komersial.

Gambar 1. Perencanaan Kawasan RDE

Rencana ini kedengaran bagus. Tapi mengapa dibangun di Puspiptek? Bukankah di sana pusat penelitian? Kan banyak orangnya? Selamat tidak nih? Nanti kena radiasinya bagaimana?

Baca juga: Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat

Kalau seandainya ada pertanyaan-pertanyaan seperti itu, mempertanyakan nasib penghuni Puspiptek dan penduduk Serpong bahkan Tangerang Selatan, maka BATAN sudah punya jawabannya. Riset yang dilakukan oleh para Peneliti di Pusat Teknologi dan Keselamatan Reaktor Nuklir (PTKRN) BATAN ini berfokus pada pelepasan radioaktivitas dan dosis radiasi di sekitar kawasan RDE dan Kawasan Nuklir Serpong (KNS) mengasumsikan RDE telah dibangun dan beroperasi.

Perlu diketahui terlebih dahulu bahwa RDE mengadopsi teknologi high temperature gas-cooled reactor (HTGR). Teknologi ini terkategori reaktor nuklir Generasi IV (GenIV), yang merupakan teknologi reaktor maju dengan berbagai keunggulan dibandingkan reaktor konvensional saat ini. HTGR menggunakan moderator grafit dan pendingin helium, sehingga memiliki densitas daya rendah. Bahan bakar HTGR merupakan pebble bed, dimana bola grafit diisi oleh ribuan partikel bahan bakar TRISO. Bentuk bahan bakar pebble bed menjamin retensi produk fisi maksimal. Sehingga, pelepasan material radioaktif ke lingkungan dapat diminimalisir [2-3].

Gambar 2. Struktur Bahan Bakar Pebble Bed

Baca juga: Mengukur Dampak Iklim Dari Pemanfaatan Energi Nuklir

Paparan radiasi lingkungan yang salah satu kontributornya adalah pelepasan material radioaktif merupakan pembahasan dari penelitian pertama, yang dilakukan oleh Pande Made Udiyani dkk [4]. Penelitian ini sebenarnya tidak hanya membahas tentang RDE, tetapi juga pelepasan dari Reaktor Serba Guna-G.A. Siwabessy, reaktor riset yang telah lama beroperasi di Kawasan Nuklir Serpong (KNS). Kalkulasi dosis radiasi yang diterima penduduk sekitar KNS (termasuk daerah Serpong dan Gunung Sindur) dari pelepasan sourceterm RSG-GAS dan RDE dibahas di sini.

Berdasarkan kalkulasi tersebut, diperoleh bahwa pelepasan radiasi dari RSG-GAS memberikan dosis radiasi yang diterima publik sebesar 9.31×10-4 mSv/tahun. Besar? Tentu saja tidak. Nilai Batas Dosis (NBD) yang ditetapkan Bapeten untuk dosis yang diterima oleh masyarakat sebesar 1 mSv/tahun. Artinya, dosis radiasi yang dilepaskan RSG-GAS tidak sampai seperseribunya [4]!

Tapi itu, kan, RSG-GAS. Bagaimana dengan RDE? Ternyata lebih rendah lagi. Dosis radiasi yang diterima publik dari RDE paling tinggi hanya 4.17×10-4 mSv/tahun, kurang dari setengah RSG-GAS. Hal ini bisa dipahami, mengingat daya termal RDE hanya sepertiga RSG-GAS, yakni 10 MW [4]. Jika ditotal, dosis tertinggi yang mungkin diterima oleh penduduk setempat adalah 6.16×10-3 mSv/tahun. Masih jauh lebih rendah daripada NBD yang ditetapkan Bapeten.

Tabel 1. Dosis individual total dari pelepasan radioaktif RDE

Artinya, paparan radiasi ke lingkungan akibat lepasan radioaktif bisa dikatakan minim dan tidak penting untuk ditakuti.

Baca juga: Seberapa Besar Radiasi Yang Dilepaskan PLTN Ke Lingkungan?

Bagaimana dengan pekerja di kawasan Puspiptek? Bukankah ketika beroperasi, RDE akan memancarkan radiasi gamma? Nah, penelitian dari Amir Hamzah dkk berikut ini menjawabnya [5].

Cara termudah untuk menentukan apakah paparan radiasi dari reaktor selamat atau tidak untuk pekerja Puspiptek adalah dengan menghitung paparan radiasi pada pekerja di dalam kawasan RDE itu sendiri. Karena merekalah yang paling dekat dengan reaktor. Pertanyaannya, berapa dosis radiasi yang mereka terima?

Hasil kalkulasi tersebut ditampilkan pada grafik berikut.

Gambar 3. Distribusi dosis radiasi di teras reaktor, perisai biologis, dan area kerja RDE

Tampak bahwa di tengah teras reaktor (sumbu x = 0) dosis radiasi sangat tinggi melebihi 109 µSv/jam. Artinya, siapapun yang terkena paparan radiasi sebesar itu akan mati secara instan atau langsung. Namun, ketika melewati perisai biologis yang terbuat dari beton standar, dosis radiasi turun sangat drastis sehingga dosis radiasi yang diterima pekerja tepat di permukaan luar perisai biologis hanya 8 µSv/jam. Angka ini lebih rendah daripada NBD yang ditentukan oleh Bapeten untuk pekerja radiasi, yakni 10 µSv/jam. Pada jarak 7 m dari permukaan luar perisai biologis, dosisnya turun hingga kira-kira 1 µSv/jam. Lebih rendah lagi [5].

Dengan begitu rendahnya dosis radiasi di sekitar perisai biologis reaktor, bisa dikatakan tidak ada radiasi gamma dari reaktor yang sampai ke kawasan Puspiptek. Sehingga tidak akan ada potensi bahaya yang disebabkan oleh paparan radiasi dari operasi normal RDE.

Menilik dari dua penelitian ini, maka jelas bahwa kondisi operasional RDE tidak memberikan dampak kesehatan apa-apa pada masyarakat. Apalagi, memang tidak ada dampak radiasi yang bisa dideteksi pada dosis radiasi dibawah 100 mSv dalam waktu singkat [6-8]. Mengingat NBD yang ditetapkan Bapeten hanya 1 mSv/tahun untuk masyarakat, dan dosis tertinggi yang diterima masyarakat jauh lebih rendah dari itu, tidak ada kekhawatiran yang perlu dipikirkan oleh pekerja di kawasan Puspiptek apalagi penduduk Serpong.

Referensi:

  1. Topan Setiadipura et al. “Cooling passive safety features of Reaktor Daya Eksperimental,” AIP Conference Proceedings 1984, 020034 (2018).
  2. Andika Putra Dwijayanto dan Muhammad Subekti. “Preliminary Study of Temperature Homogenisation in Experimental Power Reactor Hot Gas Chamber.” Journal of Physics: Conference Series 1198, 022019 (2019).
  3. Ihda Husnayani dan Pande Made Udiyani. “Radionuclide Characteristics of RDE Spent Fuels.” Jurnal Teknologi Reaktor Nuklir, Vol. 20, No. 2, pp. 69-76 (2018).
  4. Pande Made Udiyani et al. “Atmospheric Dispersion Analysis for Expected Radiation Dose due to Normal Operation of RSG-GAS and RDE Reactors.” Atom Indonesia, Vol. 44, No. 3, pp. 115-121 (2018).
  5. Amir Hamzah et al. “Preliminary analysis of dose rates distribution of experimental power reactor 10 MW using MCNP.” Journal of Physics: Conference Series 1198, 022038 (2019).
  6. Wade Allison. Radiation and Reason. York: Wade Allison Publishing (2009).
  7. David Bodansky. Nuclear Energy: Principles, Practices, and Prospects 2nd Edition. New York: Springer-Verlag (2004).
  8. World Nuclear Association. Nuclear Radiation and Health Effects. (http://www.world-nuclear.org/information-library/safety-and-security/radiation-and-health/nuclear-radiation-and-health-effects.aspx), diakses 12 Juni 2019.

Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat, Bukan Sebaliknya

Tidak ada argumen yang lebih sering digunakan untuk menolak energi nuklir selain kecelakaan Chernobyl. Kecelakaan PLTN yang terjadi pada tahun 1986 ini menjadi senjata utama bagi kaum anti-nuklir untuk menunjukkan betapa bahayanya energi nuklir bagi kehidupan manusia. Kata “radiasi” pun seolah menjadi momok yang mengerikan bagi publik.

Gambar 1. PLTN Chernobyl, Unit 1 paling dekat, Unit 4 paling jauh (sumber: ANS Nuclear Cafe)

Patut diakui bahwa kecelakaan PLTN Chernobyl adalah kecelakaan parah, dan tidak ada yang berharap kecelakaan sejenis itu terulang lagi. Tapi menjadikan kecelakaan PLTN Chernobyl sebagai bukti bahayanya energi nuklir adalah sama sekali tidak beralasan. Sebaliknya, justru kecelakaan PLTN Chernobyl adalah bukti bahwa energi nuklir itu sangat selamat.

Ada beberapa alasan yang melandasinya. Pertama. PLTN Chernobyl menggunakan desain reaktor yang secara alamiah buruk, yakni RBMK (reaktor bolshoy moshchnosty kanalny/reaktor kanal daya tinggi). Berbeda dengan reaktor nuklir pada umumnya, RBMK menggunakan moderator netron dan pendingin terpisah; moderator berupa grafit dan pendingin air [1]. Tujuan penggunaan pendingin dan moderator terpisah adalah supaya bahan bakar dapat diganti ketika reaktor beroperasi. Hal ini sangat penting karena Uni Soviet kala itu menggunakan PLTN tipe RBMK untuk memproduksi bahan baku senjata nuklir.

Gambar 2. Desain skematik RBMK (sumber: WNA)

Masalahnya, penggunaan moderator grafit dan pendingin air membuat reaktor memiliki masalah yang melekat; reaktivitas void RBMK bernilai sangat positif. Artinya, ketika terjadi kehampaan (void) dalam reaktor, misalkan karena air pendingin menguap terlalu banyak, daya reaktor akan naik alih-alih turun [1]. Sementara, pada reaktor lain, daya reaktor akan turun ketika terjadi void dalam reaktor (reaktivitas void negatif) [2]. Bahkan para insinyur nuklir Soviet pun sudah paham masalah ini, tapi kemudian diabaikan oleh pemerintah [3]. Hal ini, ditambah dengan berbagai cacat lain pada desainnya, berkontribusi dalam menyebabkan kecelakaan PLTN Chernobyl.

Tidak ada reaktor nuklir yang menggunakan teknologi RBMK di luar bekas negara Uni Soviet. Tipe reaktor nuklir yang paling banyak digunakan saat ini, LWR (light water reactor) memiliki reaktivitas void negatif. Cacat alamiah desain tidak akan ditemukan di LWR yang mendominasi lebih dari 80% reaktor nuklir di dunia. Bahkan, sisa-sisa RBMK di Rusia sudah dimodifikasi agar lebih selamat.

Baca juga: Keunggulan PLTN Terapung Untuk Indonesia

Kedua, dengan berbagai cacat alamiah tersebut, sebenarnya PLTN Chernobyl Unit 4 tidak akan mengalami kecelakaan tersebut seandainya operator dan supervisor tidak melanggar berlapis-lapis protokol keselamatan. Pada saat itu, reaktor dioperasikan dalam kondisi yang tidak mungkin tercapai dalam kondisi operasional. Seluruh sistem keselamatan dimatikan tetapi reaktor dioperasikan dalam keadaan sangat berbahaya, bahkan dilarang oleh peraturan Uni Soviet sendiri [4].

Faktor terbesar kecelakaan PLTN Chernobyl Unit 4 adalah human error. Karena sekalipun teknologi yang digunakan sangat cacat, kecelakaan itu tidak akan terjadi jika operator dan supervisor tidak bertindak ceroboh.

Ketiga, ledakan uap dan hidrogen yang terjadi menyebabkan 5% material nuklir terhambur dari dalam reaktor ke lingkungan. Api yang menyambar grafit moderator menyebabkan kebakaran yang membawa debu radioaktif ke berbagai bagian Eropa. Namun, total kematian yang disebabkan oleh kecelakaan ini hanya ± 60 orang. Operator dan supervisor tewas dalam ledakan, 28 orang pemadam kebakaran/likuidator tewas akibat acute radiation sickness (ARS), sementara sisanya karena mengidap kanker tiroid akibat meminum susu yang terkontaminasi I-131 dan tidak bisa terselamatkan [5].

Sempat diproyeksikan bahwa akan ada sekitar 4000 kematian susulan sebagai akibat paparan radiasi dari kecelakaan tersebut. Namun, laporan UNSCEAR tahun 2008 menegasikan proyeksi itu, mengatakannya sebagai, “Tidak bisa dibedakan dengan kematian biasa…” [5] Sehingga, angka kematian di atas bisa dikatakan final.

Dibandingkan dengan 300 ribu orang tewas tiap tahunnya di Cina akibat polusi PLTU batubara [6], angka kematian akibat kecelakaan PLTN Chernobyl Unit 4 ini tentu sangatlah sedikit.

Baca juga: Mengenal Reaktor Daya Eksperimental, Reaktor Nuklir Desain Anak Negeri

Keempat, PLTN Chernobyl yang mengalami kecelakaan hanya Unit 4. Sementara, Unit 1-3 tidak terdampak. Pasca kecelakaan, PLTN Chernobyl Unit 1-3 masih tetap dioperasikan, sebelum unit terakhir ditutup permanen pada tahun 2000 [1]. Hal ini menarik, karena kecelakaan PLTN terparah yang mungkin terjadi pun ternyata tidak memengaruhi unit-unit yang berada di sekitarnya!

Kelima, kota Pripyat dan Chernobyl nyatanya tidak menjadi sejenis nuclear wasteland. Memang kedua kota itu ditinggalkan dan tidak banyak yang manusia tinggal di sekitar sana, tapi alih-alih menjadi lahan tandus, hewan-hewan dan tumbuhan tumbuh dan berkembangbiak dengan subur [7]. Bahkan kedua kota itu menjadi destinasi wisata sejak 2011, dan baik-baik saja untuk dikunjungi. Apakah keberadaan manusia justru berdampak lebih negatif pada alam Chernobyl dibandingkan kecelakaan PLTN?

Orang-orang yang hidup di Chernobyl (tepi zona ekslusi), di tahun 2018 ada sekitar 150 orang yang hidup di zona tersebut, Sumber: BBC

Keenam, level radiasi di kawasan Chernobyl dan negara sekitarnya relatif rendah. Pengukuran dosis radiasi yang dilakukan UNSCEAR menunjukkan bahwa, pada rentang tahun 1986-2005, di daerah yang paling terkontaminasi, dosis yang diterima penduduk rerata sekitar 2,4 mSv di Belarusia, 1,1 mSv di Rusia dan 1,2 mSv di Ukraina. Sebagai perbandingan, rerata dosis radiasi tahunan di bumi adalah 2,4 mSv/tahun. Selain itu, beberapa daerah memiliki radiasi latar jauh lebih tinggi dari angka ini, misalnya Kerala, India (70 mSv/tahun) dan Ramsar, Iran (400 mSv/tahun) [8,9].

Gambar 3. Pengukuran radiasi di stadion olahraga 4 km dari reaktor Chernobyl pada tahun 2008. Dosis radiasi terukur 2,8 µSv/jam, atau 2,5 mSv/tahun (sumber: Jaworowski, 2009)

Kecelakaan nuklir terparah sekalipun tidak menyebabkan paparan radiasi eksternal fatal pada masyarakat.

Baca juga: Seberapa Besar Radiasi Yang Dilepaskan PLTN Ke Lingkungan?

Ketujuh, kecelakaan PLTN Chernobyl adalah satu-satunya kecelakaan PLTN yang menyebabkan korban jiwa selama sejarah operasionalnya, dengan jumlah korban minimal. Bahkan sekalipun mempertimbangkan angka “4000 kematian tambahan” yang sudah dikoreksi oleh UNSCEAR, tingkat kematian yang disebabkan nuklir masih yang paling rendah dibandingkan moda energi lainnya seperti ditunjukkan oleh gambar berikut[10]

Gambar 4. Jumlah kematian per TWh energi (diolah dari Nextbigfuture)

Demikianlah tujuh alasan mengapa kecelakaan PLTN Chernobyl justru menunjukkan bahwa energi nuklir merupakan energi yang selamat, bahkan paling selamat dibanding moda energi lainnya. Secara praktis, kecelakaan dengan level setara dengan PLTN Chernobyl Unit 4 tidak mungkin terjadi lagi. Padahal, untuk menyamai level bahaya yang diakibatkan PLTU batubara, kecelakaan selevel Chernobyl perlu terjadi 4 kali setiap jam. Ya, 4 Chernobyl tiap jam atau 1 Chernobyl tiap 15 menit harus terjadi agar dampak energi nuklir seburuk energi batubara. Mungkinkah hal itu terjadi, sementara 400 GWe PLTN dalam operasi saat ini masih beroperasi baik-baik saja?

Referensi:

  1. World Nuclear Association. Chernobyl Accident 1986. (http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/chernobyl-accident.aspx). Diakses 28 Februari 2019.
  2. Max Carbon. 2006. Nuclear Power, Villain or Victim? Our Most Misunderstood Source of Electricity. Madison: Pebble Beach Publisher.
  3. Douglas E. Hardtmayer. Five Things You Probably Didn’t Know About Chernobyl. (http://ansnuclearcafe.org/2018/04/26/five-things-you-probably-didnt-know-about-chernobyl/). Diakses 11 Maret 2019.
  4. Bernard L Cohen. 1990. The Nuclear Energy Option. Pittsburgh: Plenum Press.
  5. United Nations Scientific Committee on the Effects of Atomic Radiation. 2011. Sources and Effects of Ionizing Radiation Volume II Annex D. New York: UNSCEAR.
  6. James Conca. Pollution Kills More People Than Anything Else. (https://www.forbes.com/sites/jamesconca/2017/11/07/pollution-kills-more-people-than-anything-else/#7b8446451a35). Diakses 28 Februari 2019.
  7. G. Deryabina et al. 2015. “Long-term census data reveal abundant wildlife populations at Chernobyl”.Current Biology, vol. 25, pp. 824-826.
  8. Geoff Russell. What can we learn from Kerala? (https://bravenewclimate.com/2015/01/24/what-can-we-learn-from-kerala/). Diakses 11 Maret 2019.
  9. Zbigniew Jaworowski. 2010. “Observations on Chernobyl After 25 Years of Radiophobia”. 21st Century Science & Technology, Summer 2010, pp 30-45.
  10. Brian Wang. Update of Death per Terawatt hour by Energy Source. (https://www.nextbigfuture.com/2016/06/update-of-death-per-terawatt-hour-by.html). Diakses 28 Februari 2019.