Ketika Hantu Ditinjau Secara Fisika

Video penampakan kuntilanak kembali menghebohkan jagat maya pada 19 September 2019, diunggah oleh akun instagram @lambe_turah dan ditonton oleh lebih dari 2 juta orang. Penampakan hantu paling populer di Indonesia itu diduga berasal dari Kecamatan Campang Raya, Bandar Lampung. Tapi kalian tau gak sih bagaimana fisika berusaha menjelaskan apa itu hantu?

Kuntilanak, salah satu hantu yang paling populer di Indonesia

Pertama-tama untuk membahas dari sisi sains fisika kita harus tahu dulu hantu itu terbuat dari apa. Ada banyak orang awam yang bilang kalau hantu itu adalah energi. Tapi, pemahaman awam tentang “energi” yang biasanya dikaitkan dengan keberadaan makhluk halus tentu beda dengan pengertian fisikanya.

Menurut paham awam, terutama yang mempercayai hal-hal ghaib, bagi mereka energi adalah sesuatu kekuatan yang dapat mempengaruhi situasi, perasaan, dan keadaan seseorang bersangkutan yang dikenai “energi” itu. Dalam konteks hantu, energi yang dimaksud adalah energi negatif, karena keberadaan makhluk halus yang satu ini disinyalir dapat menciptakan rasa takut, cemas, tidak enak, bagi yang “merasakannya” / melihatnya. Padahal, dalam dunia sains fisika, energi sendiri adalah suatu ukuran kemampuan dalam melakukan kerja, diukur dalam satuan Joule. Pemahaman ini tidak ada kaitannya sama sekali dengan hantu. Bahkan dalam fisika, tidak ada yang disebut energi negatif.

Bayangan yang biasanya muncul dalam pikiran orang ketika mendengar kata energi

Meskipun begitu, tetap saja ada pemahaman yang mencoba menghubungkan hantu dengan energi yang didefinisikan dalam dunia fisika.

Jika ditanyakan apa alasannya, banyak dari antara mereka mengaitkan keberadaan hantu dengan hukum kekekalan energi, yaitu hukum yang mengatakan bahwa energi tidak dapat diciptakan maupun dimusnahkan, tapi dapat diubah bentuknya.

Mereka berpendapat jika ada seseorang yang meninggal, energi yang tersimpan dalam tubuhnya akan langsung terkonversikan menjadi “energi” yang mereka sebut sebagai hantu.

Padahal proses perubahan energi tidaklah seperti itu. Energi yang tersimpan di tubuh kita nyatanya akan diterima oleh hewan yang mengurai tubuh kita. Selain oleh hewan pengurai (dekomposer), sisa nutrisi dan mineral dalam tubuh kita pun akan diserap oleh tumbuhan yang hidup di sekitar jasad, menyediakan energi bagi tumbuhan untuk hidup.

Salah satu contoh hewan dekomposer, yaitu hewan yang mengurai tubuh manusia yang sudah meninggal

Selain dikatakan energi, banyak juga orang yang berkata bahwa hantu adalah suatu materi yang tidak kelihatan. Tapi, apakah ada bukti untuk pernyataan tersebut? Jawaban singkatnya, tidak.

Dalam sains fisika, materi adalah suatu hal yang menempati ruang dan memiliki massa. Hingga sekarang tidak dikenal satu pun partikel yang dapat menyusun hantu. Tak ada pula seorang pun yang dapat menimbang massa dari hantu.

Secara tidak langsung misteri keberadaan hantu dipatahkan melalui eksperimen fisika partikel terbesar di CERN dengan Large Hadron Collider. LHC sendiri adalah mesin akselerator partikel tercepat dan terbesar di dunia. Dengan menumbukkan partikel yang memiliki kecepatan tinggi, para peneliti dapat mengetahui bagaimana partikel saling berinteraksi. Selain itu, mereka juga dapat mengetahui apa saja penyusun suatu partikel.

Large Hadron Collider (LHC)

Profesor Brian Cox mengatakan jika hantu memang bisa dijelaskan secara fisika, seharusnya materi yang menyusun hantu itu dapat ditemukan setelah atom terpecah menjadi beberapa bagian subatomik.

Secara logika sederhananya, jika hantu adalah suatu materi, harusnya hantu ini dapat berinteraksi dengan materi sekitar yang jelas-jelas dapat kita lihat. Selain itu, harusnya semua orang dapat melihatnya. Tapi kenyataannya tidak semua orang dapat melihatnya, bahkan ketika beberapa orang itu berkumpul di tempat yang sama dan pada waktu yang sama. Hal ini karena hantu bukanlah suatu materi.

Seperi yang kita tahu, alam semesta tersusun atas materi dan energi. Jadi, jika hantu bukan keduanya, maka hantu dapat dikatakan tidak ada.

Lalu, kenapa ada beberapa orang yang dapat melihat atau sekadar merasakan keberadaan hantu?

Sebenarnya ada banyak faktor ilmiah yang dapat membuat seseorang melihat hantu, namun penyebab yang paling umum adalah sebagai berikut :

1. Efek psikologis

Efek psikologis yang dimaksud disini adalah efek yang akan dirasakan seseorang akibat pemikirannya sendiri atau akibat apa yang ia dengar dari orang lain. Contohnya, rumor yang beredar dapat mempengaruhi cara pandang seseorang terhadap sesuatu melalui alam bawah sadarnya. Jika seseorang diberi tahu bahwa tempat A adalah tempat berhantu, ia akan memikirkan hal tersebut secara terus menerus dan akhirnya otak akan menciptakan suatu ilusi yang kemudian ia sebut hantu.

2. Efek Neurologis

Seseorang yang mengidap suatu gangguan neurologis/kejiwaan tertentu seperti skizofrenia seringkali mengalami halusinasi. Halusinasi inilah yang menyebabkan penderitanya melihat atau mendengar hal-hal yang aneh. Penyakit yang disebabkan oleh perpaduan dari genetik, lingkungan, dan ketidakseimbangan senyawa kimia di otak ini membuat otak seseorang tidak dapat berfungsi sebagaimana mestinya. Akibatnya, penderita kesulitan membedakan mana yang realita dan khayalan. Hal ini membuat penderita seringkali salah mempersepsikan khayalannya sendiri sebagai suatu kenyataan.

Selain karena adanya penyakit skizofrenia, ternyata halusinasi juga dapat disebabkan oleh beberapa faktor lainnya. Yang paling umum di antaranya adalah akibat kurang tidur. Oleh karena itu, penting bagi kita untuk tidur cukup untuk menjaga kesehatan otak kita.

Berdasarkan apa yang sudah dijelaskan di artikel ini, bisa kita simpulkan bahwa fisika tidak dapat menjelaskan keberadaan hantu. Itulah kenapa untuk kajian hantu dll ada bidang sendiri bernama “Metafisika” atau bahasa kerennya adalah “Beyond Physics”.

Eeferensi
[1] Radford, Benjamin. 2011. Do Einstein’s Laws Prove Ghosts Exist?. Diakses pada tanggal 2 Agustus 2019

[2] Hamer, Ashley. 2019. Curiosity. According To Professor Brian Cox, Particle Physics Proves Ghosts Don’t Exist. Diakses pada tanggal 2 Agustus 2019

[3] Griffin, Andrew. 2017. Ghosts definitely don’t exist because otherwise the Large Hadron Collider would have found them, claims Brian Cox. Diakses pada tanggal 2 Agustus 2019

[4] Tremblay, Sylvie. 2018.This Is Probably Why You’ve Seen a Ghost, According to Science. Diakses pada tanggal 2 Agustus 2019

[5] Dagnall, Neil. 2016. The top three scientific explanations for ghost sightings. Diakses pada tanggal 2 Agustus 2019

[6] Sandy. 2014. Ilmuwan: Hantu Hanyalah Ilusi Pikiran Manusia. Diakses pada tanggal 2 Agustus 2019

[7] Swari, Risky Candra. 2018.Skizofrenia. Diakses pada tanggal 2 Agustus 2019

[8] Mayo Clinic. 2018. Schizophrenia. Diakses pada tanggal 2 Agustus 2019

Bagaimana Jika Investasi Energi Terbarukan Dialihkan Ke Energi Nuklir?

Ditengah isu perubahan iklim yang makin menguat dan polusi udara yang makin parah, usaha-usaha peralihan dari energi fosil ke energi bersih terus dilakukan. Dari moda energi bersih yang ada, energi terbarukan mendapat sorotan paling besar. Panel surya dan turbin angin dianggap menjadi Messiah bagi planet bumi.

Jerman dengan percaya diri menjalankan program Energiewende, yang mana mereka berniat menggantungkan diri hanya pada energi terbarukan dibarengi dengan meninggalkan energi nuklir sama sekali pada tahun 2022 [1]. Tidak ketinggalan, Mark Z. Jacobson, professor Teknik Sipil dari Stanford University, membuat peta jalan (roadmap) untuk menuju Amerika Serikat dengan 100% energi terbarukan [2]. Proposal Jacobson malah lebih nekad; tidak mau mengandalkan energy storage dan lebih banyak mengandalkan variabilitas angin di berbagai wilayah Amerika Serikat.

Seberapa layak konsep tersebut? Entahlah. Konsep Jacobson sendiri sudah dipersoalkan oleh Prof. Barry Brook dkk [3]. Energiewende pun pelaksanaannya cenderung bermasalah. Walau biaya yang dikeluarkan mencapai USD 580 milyar, nyatanya Jerman dipastikan gagal mencapai target reduksi emisi tahun 2020 [4].

Baca juga: Membongkar Mitos Negative Pricing Listrik Jerman

Sejak tahun 2000 hingga 2016, sektor energi terbarukan mendapatkan investasi dengan nilai mencapai USD 4 trilyun, dengan perincian USD 3 trilyun untuk sektor pembangkitan dan USD 1 trilyun untuk upgrade jaringan listrik [5]. Hal terakhir dibutuhkan karena sifat energi terbarukan yang intermittent mengharuskan adanya perubahan dalam jaringan listrik, supaya tidak jebol. Bagaimana hasilnya?

Tahun 2016, energi terbarukan menghasilkan listrik sebesar 1844.6 TWh. Angka ini sudah termasuk biomassa, yang strictly speaking tidak pas dikategorikan dalam energi bersih. Sementara, pembangkitan listrik di dunia mencapai 24.930,2 TWh [6]. Artinya, energi terbarukan memiliki bauran 7,4% dari pembangkitan listrik global. Dengan nilai investasi total USD 4 trilyun, berarti tiap milyar USD yang dikeluarkan sejak tahun 2000 berkontribusi terhadap kenaikan 0,00185% bauran listrik dunia.

Dengan bauran energi terbarukan masih kurang dari 10% bauran listrik dunia, nilai investasi sebesar itu terasa tidak terlalu worth it.

Baca juga: Keunggulan PLTN Terapung Untuk Indonesia

Bagaimana jika, seandainya, nilai investasi tersebut dialihkan pada nuklir?

PLTN Cattenom, Prancis (sumber: Wikipedia)

Walau selama ini telah sukses menyediakan energi rendah karbon yang tersedia tiap saat, persepsi tentang nuklir masih belum terlalu bersahabat. Masih banyak yang menganggap nuklir itu tidak selamat dan limbahnya berbahaya, walau fakta mengatakan sebaliknya [7,8]. Selain itu, mitos yang berkembang juga bahwa energi nuklir itu mahal, walau faktanya tidak selalu demikian [9].

Kembali ke pertanyaan, bagaimana jika USD 4 trilyun itu dialihkan ke nuklir?

Estimasi biaya pembangunan PLTN bervariasi, dari yang rendah hingga tinggi. Di sini, coba dihitung dalam dua skenario. Pertama, skenario Amerika Serikat. US Energy Information Administration (EIA) mengestimasikan bahwa overnight cost PLTN berkisar USD 5.224/kW [10]. Kedua, skenario Korea Selatan. Proyek PLTN Shin Kori Unit 3 dan 4 memakan biaya total hingga USD 6,46 milyar untuk daya 2.700 MW, sehingga overnight cost dari PLTN ini berkisar USD 2.400/kW [11].

Kenapa skenario Korea Selatan jauh lebih rendah biayanya daripada skenario Amerika Serikat? Ada banyak faktor, yang mungkin paling berpengaruh adalah standardisasi desain. PLTN yang dibangun oleh Korea Selatan dikembangkan dengan desain yang terstandar, tidak berubah-ubah dari satu tempat dan tempat lain. Dari sana, mereka mampu melaksanakan pembangunan secara efisien dan kemudian biaya yang lebih rendah [12].

Menggunakan skenario Amerika Serikat, dana USD 4 trilyun dapat dikonversi menjadi PLTN dengan kapasitas 765.7 GW. Best practice operasional PLTN di Amerika Serikat memberikan angka faktor kapasitas lebih dari 90% [13]. Untuk asumsi konservatif, diambil angka 85%. Dari sini, PLTN diketahui mampu membangkitkan daya 5.701,38 TWh tiap tahunnya, atau setara dengan 22,87% bauran listrik dunia.

Dengan skenario energi nuklir mahal sekalipun, bauran nuklir yang dihasilkan hampir tiga kali lipat energi terbarukan!

Baca juga: Mengukur Dampak Iklim Dari Pemanfaatan Energi Nuklir

Sementara, menggunakan skenario Korea Selatan, dana USD 4 trilyun dikonversi menjadi PLTN dengan kapasitas terpasang 1.666,7 GW. Dengan faktor kapasitas sama, mampu dibangkitkan 12.410 TWh tiap tahunnya, atau 49,78% bauran listrik dunia. Pada skenario ini, energi nuklir menjadi bauran energi tertinggi dalam pembangkitan listrik. Faktanya, pembangkitan daya sebesar ini cukup untuk sepenuhnya menggantikan penggunaan batubara dan minyak bumi dalam pembangkitan listrik dunia!

Tahun 2016, nuklir membangkitkan 2.612,8 TWh listrik, atau setara dengan 10,48% bauran listrik dunia [6]. Jika ditambah dengan skenario Amerika Serikat, bauran listrik total akan naik menjadi 33,35%. Mengompensasi kehilangan energi terbarukan karena perpindahan aliran investasi, angka ini cukup untuk menggantikan 68,5% pembangkitan listrik dari batubara. Sementara, pada skenario Korea Selatan, ditambah dengan PLTN yang sudah ada, baurannya menjadi 60,26%. Angka ini mampu menggantikan 86,1% listrik dari batubara dan gas alam sekaligus!

Dari sini, tampak jelas bahwa, sekalipun menggunakan skenario mahal, energi nuklir lebih efektif dan efisien untuk membersihkan jaringan listrik dari energi polutif. Dengan skenario murah, PLTN secara efektif mampu menggantikan hampir 90% pembangkitan listrik dari batubara dan gas alam, yang notabene merupakan penyumbang emisi CO2 dan polusi terbesar dalam sektor kelistrikan.

Seandainya para investor itu memilih teknologi yang tepat dalam transisi menuju energi bersih, maka tentulah problematika perubahan iklim dan polusi udara akan lebih mudah teratasi. Sayang sekali, ketakutan irasional terhadap energi nuklir membuat usaha mitigasi perubahan iklim dan polusi udara jadi jauh lebih mahal tanpa hasil berarti.

Referensi:

  1. Germany’s Energiewende – The Easy Guide. Available online at https://www.cleanenergywire.org/easyguide
  2. Mark Z. Jacobson et al. 2017. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule (1): 108-121.
  3. Ben P. Heard et al. 2017. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews (76): 1122-1133.
  4. Frank Dohmen et al. German Failure on the Road to a Renewable Future. Available online at https://www.spiegel.de/international/germany/german-failure-on-the-road-to-a-renewable-future-a-1266586.html
  5. Roger Andrews. Worldwide investment in renewable energy reaches US$ 4 trillion – with little to show for it. http://euanmearns.com/worldwide-investment-in-renewable-energy-reaches-us-4-trillion-with-little-to-show-for-it/
  6. British Petroleum. 2018. BP Statistical Review of World Energy June 2018. London: BP.
  7. R Andika Putra Dwijayanto. Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat, Bukan Sebaliknya. Available online at https://warstek.com/2019/03/16/chernobylnpp/
  8. R Andika Putra Dwijayanto. Bagaimana Pengelolaan Limbah Radioaktif PLTN? Available online at https://warstek.com/2018/04/10/limbahpltn/
  9. R Andika Putra Dwijayanto. Apa Benar Nuklir Mahal? Tanggapan Untuk Arcandra Tahar. Available online at https://warstek.com/2018/04/21/listriknuklir/
  10. US EIA. Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2019. Available online at https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf
  11. Final decision nearing on ending construction of Shin-Kori 5, 6 reactors. Available online at http://english.hani.co.kr/arti/english_edition/e_national/813938.html
  12. Michel Berthelemy, Lina Escobar Rangel. 2015. Nuclear reactors’ construction costs: The role of lead-time, standardization and technological progress. Energy Policy (82): 118-130.
  13. US EIA. Electric Power Monthly. Available online at: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b

Membongkar Mitos Negative Pricing Listrik Jerman

Di media sosial, meme tentang Jerman “membayar” pelanggan untuk menggunakan listrik kembali beredar. Klaimnya, hal itu merupakan keberhasilan dari “energi terbarukan,” yang kemudian membuat publik berkhayal hal tersebut bisa diterapkan di Indonesia. Meme tersebut bukan meme baru, tetapi entah kenapa kembali bersirkulasi.

Gambar 1. Meme tentang kelebihan pasokan listrik berlebih yang disalahpahami.

Pertanyaannya, benarkah isi meme tersebut? Ramainya penyebaran meme tentang negative pricing dengan sentiment positif mengisyaratkan bahwa publik sama sekali tidak paham tentang sistem kelistrikan di Jerman.

Pertama, patut dipahami dulu bahwa sistem kelistrikan di Jerman terprivatisasi total [1]. Artinya, mulai dari sektor hulu sampai hilir sama sekali tidak dipegang oleh negara, melainkan oleh swasta. Pembangkitan listrik, transmisi listrik, distribusi listrik, bisa dipegang oleh perusahaan yang berbeda-beda. Negara tidak hadir dalam bentuk BUMN, perannya hanya sebagai regulator [2].

Baca juga: Meluruskan Salah Kaprah Tentang Membaca Kapasitas Pembangkit Listrik

Kedua, penguasaan total oleh swasta berarti penyediaan layanan kelistrikan berbasis pada untung-rugi, bukan murni pelayanan masyarakat [3]. Semua perusahaan yang terlibat pasti mengharapkan keuntungan, dan akan menjual “elektron” ke perusahaan di level di bawahnya dengan margin keuntungan.

Sebagai ilustrasi, misalkan harga listrik dari pembangkit seharga USD 3 sen/kWh. Perusahaan pembangkit kemudian menjual ke perusahaan transmisi seharga USD 6 sen/kWh. Lalu, perusahaan transmisi menjual ke perusahaan distribusi seharga USD 9 sen/kWh. Masyarakat kemudian membayar USD 15 sen/kWh ke perusahaan distribusi setelah melewati perusahaan jasa sales listrik. Jadi, harga keluar dari pembangkit ke pengguna naik 500%! Belum termasuk berbagai pajak dan biaya yang harus dibayarkan.

Ketiga, jika listrik dikuasai swasta dan jelas bahwa orientasi mereka adalah keuntungan, maka dari mana ceritanya mereka bisa membayar masyarakat untuk memakai listrik? Jawabannya sederhana: SUBSIDI [4]. Negara memberi subsidi, melalui berbagai jenis peraturan dan regulasi  Subsidi ke siapa? Perusahaan energi! Khususnya yang mau menggunakan “energi terbarukan,” yang notabene menjadi bahasan meme tersebut.

Walau sering digembargemborkan murah, nyatanya “energi terbarukan” itu tidak murah dan sulit untuk berharap bisa benar-benar murah. Berita-berita tentang panel surya dan turbin angin harganya semakin lama semakin turun adalah bagian dari How to Lie with Statistics [5]. Harga pembangkit lebih murah tidak secara langsung menyebabkan harga listrik murah, karena masih tergantung pada aspek-aspek lain, entah itu usia pakai, faktor kapasitas, maupun integrasi dengan jaringan listrik.

“Energi terbarukan” sangat tergantung pada belas kasih cuaca yang tidak selalu stabil. Karena keandalannya yang rendah dan site-limited, “energi terbarukan” akhirnya menjadi mahal [6]. Ini merupakan sifat melekat dan tidak bisa diakal-akali menggunakan teknologi lain. Masalah fisika, bukan engineering.

Berdasarkan alasan tersebut, maka wajar jika perusahaan swasta harus diiming-imingi insentif dan subsidi dulu supaya mau berinvestasi di “energi terbarukan.” Kalau tidak ada subsidi, ekspansi “energi terbarukan” tidak akan seperti sekarang. Warren Buffett, miliuner yang berinvestasi di energi bayu, mengakui terang-terangan bahwa satu-satunya alasan membangun turbin angin adalah karena adanya subsidi dari negara [7].

Baca juga: Mengukur Sustainabilitas Energi Nuklir Dengan Uranium dan Thorium Lokal

Kelima, kenapa bisa terjadi negative pricing? Listrik yang terprivatisasi penuh membuat hukum pasar bekerja: suplai berlebih, harga jatuh. Sifat sistem kelistrikan adalah produksi dan konsumsi harus sama, kalau tidak jaringan listrik bisa terganggu bahkan jebol. Negative pricing terjadi ketika produksi dari “energi terbarukan” berlebih tetapi permintaan rendah. Bauran “energi terbarukan” dalam jaringan listrik dapat menimbulkan power surge utamanya ketika matahari sedang bersinar sangat terang atau angin berembus kencang [8]. Hal ini menyebabkan pembangkitan listrik jadi sangat berlebih dan tidak sesuai dengan kebutuhan, sehingga membahayakan jaringan. Untuk mencegah gangguan pada sistem pembangkit maupun jaringan listrik, perusahaan yang mendapat subsidi dari negara menggunakan subsidi itu untuk “membayar” masyarakat agar menggunakan listrik.

Jadi pada hakikatnya, negative pricing tidak pernah disebabkan oleh harga “energi terbarukan” yang murah, melainkan subsidi negara/pemerintah pada perusahaan kelistrikan yang kemudian diberikan pada masyarakat.

Keenam, harga wholesale tidak sama dengan harga retail. Dalam pasar kelistrikan yang terliberalisasi, harga listrik berubah dari waktu ke waktu [9]. Dari harga sangat mahal menjadi sangat murah bahkan negatif. Pertanyaannya, berapa lama negative wholesale price itu terjadi? Apakah lebih lama atau lebih sebentar dari expensive wholesale price?

Baca juga: Mengukur Dampak Iklim Dari Pemanfaatan Energi Nuklir

Realitanya, negara-negara yang banyak mengintegrasikan “energi terbarukan” ke jaringan listrik mereka memiliki retail price, alias harga riil, paling mahal. Denmark, sebagai contoh, retail price listrik mereka mencapai EUR 31,23 sen/kWh, sementara Jerman mencapai EUR 30 sen/kWh. Angka-angka tersebut merupakan harga tertinggi di Eropa. Sementara, negara-negara dengan bauran “energi terbarukan” lebih rendah, seperti Inggris Raya dan Prancis, memiliki retail price lebih rendah (EUR 20,24 sen/kWh dan EUR 17,99 sen/kWh) [10].

Gambar 2. Harga listrik rumah tangga di Eropa. Tampak bahwa Denmark (DK) dan Jerman (DE) termasuk yang paling mahal. (sumber: Eurostat)

Di Amerika Serikat, California memiliki bauran “energi terbarukan” cukup tinggi. Namun, harga listriknya lebih tinggi daripada rerata negara-negara bagian Amerika Serikat lain dengan bauran “energi terbarukan” lebih rendah. Padahal, California juga mengalami negative pricing [11].

Gambar 3. Harga listrik di California lebih tinggi dari rerata Amerika Serikat (sumber: Environmental Progress)

Dengan demikian, walau terkesan bahwa masyarakat “dibayar” untuk menggunakan listrik, dibandingkan dengan negara lain yang sistem kelistrikannya tidak serumit Jerman (dan negara dengan bauran “energi terbarukan” tinggi lain), harga yang harus dibayarkan masyarakat untuk listrik justru lebih mahal! Bauran “energi terbarukan” lebih dari 25% dalam jaringan listrik akan meningkatkan probabilitas terjadinya negative pricing secara eksponensial, dan ini jelas bukan hal yang sehat [12].

Memahami informasi secara setengah-setengah memang memiliki kecenderungan menyesatkan. Untuk menilai secara adil, harus dipahami sistem kelistrikan yang berlaku secara keseluruhan. Terkait kasus negative pricing, maka pemahaman menyeluruh membuktikan pada kita bahwa realitanya sama sekali berbeda dengan pemahaman publik. Bahwa “energi terbarukan” memang menyebabkan negative pricing, tetapi tidak membuat harga listrik keseluruhan lebih murah, malah sebenarnya lebih mahal.

Referensi

  1. Matthias Heddenhausen, 2007. Privatisations in Europe’s liberalised electricity markets – the cases of the United Kingdom, Sweden, Germany, and France. Berlin: Research Unit EU Integration.
  2. Torsten Brandt, 2006. Liberalisation, privatisation and regulation in the German electricity sector. Dusseldorf: Wirtschafts- und Sozialwissenschaftliches Institut.
  3. Hannes Weigt, 2009. A Review of Liberalization and Modeling of Electricity Markets. Available online at https://mpra.ub.uni-muenchen.de/65651/
  4. Andrei Morch et al, 2016. Post-2020 framework for a liberalised electricity market with a large share of renewable energy resources. Norway: Market4Res.
  5. Darrell Huff, 1954. How to Lie with Statistics. New York: W. W. Norton & Company.
  6. Andika Putra Dwijayanto, 2017. Let’s Run the Numbers: Menguji Klaim Antara Energi Nuklir dan “Energi Terbarukan”. Available online at http://bit.ly/letsrunnumber
  7. Nancy Pfotenhauer. Big Wind’s Bogus Subsidies. Accessed from https://www.usnews.com/opinion/blogs/nancy-pfotenhauer/2014/05/12/even-warren-buffet-admits-wind-energy-is-a-bad-investment
  8. Liam Stoker. ‘Unprecedented’ events send UK power market into negative pricing for six hours straight. Accessed from https://www.current-news.co.uk/news/unprecedented-events-send-uk-power-market-to-negative-pricing-for-six-hours-straight
  9. International Energy Agency, 2005. Lesson from Liberalised Electricity Markets. Paris: IEA.
  10. Electricity Price Statistics. Accessed from https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics
  11. Environmental Progress. California. Accessed from http://environmentalprogress.org/california
  12. Milou J. Saraber, 2016. Negative Electricity Prices in the German Electricity Market. Thesis, Rotterdam School of Management, Erasmus University.