görüntülü sohbet etme erdi

Kecelakaan Chernobyl Adalah Bukti Energi Nuklir Itu Selamat, Bukan Sebaliknya

Tidak ada argumen yang lebih sering digunakan untuk menolak energi nuklir selain kecelakaan Chernobyl. Kecelakaan PLTN yang terjadi pada tahun 1986 ini menjadi senjata utama bagi kaum anti-nuklir untuk menunjukkan betapa bahayanya energi nuklir bagi kehidupan manusia. Kata “radiasi” pun seolah menjadi momok yang mengerikan bagi publik.

Gambar 1. PLTN Chernobyl, Unit 1 paling dekat, Unit 4 paling jauh (sumber: ANS Nuclear Cafe)

Patut diakui bahwa kecelakaan PLTN Chernobyl adalah kecelakaan parah, dan tidak ada yang berharap kecelakaan sejenis itu terulang lagi. Tapi menjadikan kecelakaan PLTN Chernobyl sebagai bukti bahayanya energi nuklir adalah sama sekali tidak beralasan. Sebaliknya, justru kecelakaan PLTN Chernobyl adalah bukti bahwa energi nuklir itu sangat selamat.

Ada beberapa alasan yang melandasinya. Pertama. PLTN Chernobyl menggunakan desain reaktor yang secara alamiah buruk, yakni RBMK (reaktor bolshoy moshchnosty kanalny/reaktor kanal daya tinggi). Berbeda dengan reaktor nuklir pada umumnya, RBMK menggunakan moderator netron dan pendingin terpisah; moderator berupa grafit dan pendingin air [1]. Tujuan penggunaan pendingin dan moderator terpisah adalah supaya bahan bakar dapat diganti ketika reaktor beroperasi. Hal ini sangat penting karena Uni Soviet kala itu menggunakan PLTN tipe RBMK untuk memproduksi bahan baku senjata nuklir.

Gambar 2. Desain skematik RBMK (sumber: WNA)

Masalahnya, penggunaan moderator grafit dan pendingin air membuat reaktor memiliki masalah yang melekat; reaktivitas void RBMK bernilai sangat positif. Artinya, ketika terjadi kehampaan (void) dalam reaktor, misalkan karena air pendingin menguap terlalu banyak, daya reaktor akan naik alih-alih turun [1]. Sementara, pada reaktor lain, daya reaktor akan turun ketika terjadi void dalam reaktor (reaktivitas void negatif) [2]. Bahkan para insinyur nuklir Soviet pun sudah paham masalah ini, tapi kemudian diabaikan oleh pemerintah [3]. Hal ini, ditambah dengan berbagai cacat lain pada desainnya, berkontribusi dalam menyebabkan kecelakaan PLTN Chernobyl.

Tidak ada reaktor nuklir yang menggunakan teknologi RBMK di luar bekas negara Uni Soviet. Tipe reaktor nuklir yang paling banyak digunakan saat ini, LWR (light water reactor) memiliki reaktivitas void negatif. Cacat alamiah desain tidak akan ditemukan di LWR yang mendominasi lebih dari 80% reaktor nuklir di dunia. Bahkan, sisa-sisa RBMK di Rusia sudah dimodifikasi agar lebih selamat.

Baca juga: Keunggulan PLTN Terapung Untuk Indonesia

Kedua, dengan berbagai cacat alamiah tersebut, sebenarnya PLTN Chernobyl Unit 4 tidak akan mengalami kecelakaan tersebut seandainya operator dan supervisor tidak melanggar berlapis-lapis protokol keselamatan. Pada saat itu, reaktor dioperasikan dalam kondisi yang tidak mungkin tercapai dalam kondisi operasional. Seluruh sistem keselamatan dimatikan tetapi reaktor dioperasikan dalam keadaan sangat berbahaya, bahkan dilarang oleh peraturan Uni Soviet sendiri [4].

Faktor terbesar kecelakaan PLTN Chernobyl Unit 4 adalah human error. Karena sekalipun teknologi yang digunakan sangat cacat, kecelakaan itu tidak akan terjadi jika operator dan supervisor tidak bertindak ceroboh.

Ketiga, ledakan uap dan hidrogen yang terjadi menyebabkan 5% material nuklir terhambur dari dalam reaktor ke lingkungan. Api yang menyambar grafit moderator menyebabkan kebakaran yang membawa debu radioaktif ke berbagai bagian Eropa. Namun, total kematian yang disebabkan oleh kecelakaan ini hanya ± 60 orang. Operator dan supervisor tewas dalam ledakan, 28 orang pemadam kebakaran/likuidator tewas akibat acute radiation sickness (ARS), sementara sisanya karena mengidap kanker tiroid akibat meminum susu yang terkontaminasi I-131 dan tidak bisa terselamatkan [5].

Sempat diproyeksikan bahwa akan ada sekitar 4000 kematian susulan sebagai akibat paparan radiasi dari kecelakaan tersebut. Namun, laporan UNSCEAR tahun 2008 menegasikan proyeksi itu, mengatakannya sebagai, “Tidak bisa dibedakan dengan kematian biasa…” [5] Sehingga, angka kematian di atas bisa dikatakan final.

Dibandingkan dengan 300 ribu orang tewas tiap tahunnya di Cina akibat polusi PLTU batubara [6], angka kematian akibat kecelakaan PLTN Chernobyl Unit 4 ini tentu sangatlah sedikit.

Baca juga: Mengenal Reaktor Daya Eksperimental, Reaktor Nuklir Desain Anak Negeri

Keempat, PLTN Chernobyl yang mengalami kecelakaan hanya Unit 4. Sementara, Unit 1-3 tidak terdampak. Pasca kecelakaan, PLTN Chernobyl Unit 1-3 masih tetap dioperasikan, sebelum unit terakhir ditutup permanen pada tahun 2000 [1]. Hal ini menarik, karena kecelakaan PLTN terparah yang mungkin terjadi pun ternyata tidak memengaruhi unit-unit yang berada di sekitarnya!

Kelima, kota Pripyat dan Chernobyl nyatanya tidak menjadi sejenis nuclear wasteland. Memang kedua kota itu ditinggalkan dan tidak banyak yang manusia tinggal di sekitar sana, tapi alih-alih menjadi lahan tandus, hewan-hewan dan tumbuhan tumbuh dan berkembangbiak dengan subur [7]. Bahkan kedua kota itu menjadi destinasi wisata sejak 2011, dan baik-baik saja untuk dikunjungi. Apakah keberadaan manusia justru berdampak lebih negatif pada alam Chernobyl dibandingkan kecelakaan PLTN?

Orang-orang yang hidup di Chernobyl (tepi zona ekslusi), di tahun 2018 ada sekitar 150 orang yang hidup di zona tersebut, Sumber: BBC

Keenam, level radiasi di kawasan Chernobyl dan negara sekitarnya relatif rendah. Pengukuran dosis radiasi yang dilakukan UNSCEAR menunjukkan bahwa, pada rentang tahun 1986-2005, di daerah yang paling terkontaminasi, dosis yang diterima penduduk rerata sekitar 2,4 mSv di Belarusia, 1,1 mSv di Rusia dan 1,2 mSv di Ukraina. Sebagai perbandingan, rerata dosis radiasi tahunan di bumi adalah 2,4 mSv/tahun. Selain itu, beberapa daerah memiliki radiasi latar jauh lebih tinggi dari angka ini, misalnya Kerala, India (70 mSv/tahun) dan Ramsar, Iran (400 mSv/tahun) [8,9].

Gambar 3. Pengukuran radiasi di stadion olahraga 4 km dari reaktor Chernobyl pada tahun 2008. Dosis radiasi terukur 2,8 µSv/jam, atau 2,5 mSv/tahun (sumber: Jaworowski, 2009)

Kecelakaan nuklir terparah sekalipun tidak menyebabkan paparan radiasi eksternal fatal pada masyarakat.

Baca juga: Seberapa Besar Radiasi Yang Dilepaskan PLTN Ke Lingkungan?

Ketujuh, kecelakaan PLTN Chernobyl adalah satu-satunya kecelakaan PLTN yang menyebabkan korban jiwa selama sejarah operasionalnya, dengan jumlah korban minimal. Bahkan sekalipun mempertimbangkan angka “4000 kematian tambahan” yang sudah dikoreksi oleh UNSCEAR, tingkat kematian yang disebabkan nuklir masih yang paling rendah dibandingkan moda energi lainnya seperti ditunjukkan oleh gambar berikut[10]

Gambar 4. Jumlah kematian per TWh energi (diolah dari Nextbigfuture)

Demikianlah tujuh alasan mengapa kecelakaan PLTN Chernobyl justru menunjukkan bahwa energi nuklir merupakan energi yang selamat, bahkan paling selamat dibanding moda energi lainnya. Secara praktis, kecelakaan dengan level setara dengan PLTN Chernobyl Unit 4 tidak mungkin terjadi lagi. Padahal, untuk menyamai level bahaya yang diakibatkan PLTU batubara, kecelakaan selevel Chernobyl perlu terjadi 4 kali setiap jam. Ya, 4 Chernobyl tiap jam atau 1 Chernobyl tiap 15 menit harus terjadi agar dampak energi nuklir seburuk energi batubara. Mungkinkah hal itu terjadi, sementara 400 GWe PLTN dalam operasi saat ini masih beroperasi baik-baik saja?

Referensi:

  1. World Nuclear Association. Chernobyl Accident 1986. (http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/chernobyl-accident.aspx). Diakses 28 Februari 2019.
  2. Max Carbon. 2006. Nuclear Power, Villain or Victim? Our Most Misunderstood Source of Electricity. Madison: Pebble Beach Publisher.
  3. Douglas E. Hardtmayer. Five Things You Probably Didn’t Know About Chernobyl. (http://ansnuclearcafe.org/2018/04/26/five-things-you-probably-didnt-know-about-chernobyl/). Diakses 11 Maret 2019.
  4. Bernard L Cohen. 1990. The Nuclear Energy Option. Pittsburgh: Plenum Press.
  5. United Nations Scientific Committee on the Effects of Atomic Radiation. 2011. Sources and Effects of Ionizing Radiation Volume II Annex D. New York: UNSCEAR.
  6. James Conca. Pollution Kills More People Than Anything Else. (https://www.forbes.com/sites/jamesconca/2017/11/07/pollution-kills-more-people-than-anything-else/#7b8446451a35). Diakses 28 Februari 2019.
  7. G. Deryabina et al. 2015. “Long-term census data reveal abundant wildlife populations at Chernobyl”.Current Biology, vol. 25, pp. 824-826.
  8. Geoff Russell. What can we learn from Kerala? (https://bravenewclimate.com/2015/01/24/what-can-we-learn-from-kerala/). Diakses 11 Maret 2019.
  9. Zbigniew Jaworowski. 2010. “Observations on Chernobyl After 25 Years of Radiophobia”. 21st Century Science & Technology, Summer 2010, pp 30-45.
  10. Brian Wang. Update of Death per Terawatt hour by Energy Source. (https://www.nextbigfuture.com/2016/06/update-of-death-per-terawatt-hour-by.html). Diakses 28 Februari 2019.

Keunggulan Pembangkit Listrik Tenaga Nuklir (PLTN) Terapung Untuk Indonesia

Keunggulan Pembangkit Listrik Tenaga Nuklir (PLTN) Terapung Untuk Indonesia

Pengembangan PLTN selama ini utamanya berfokus di PLTN darat. Mengingat, kebutuhan listrik utamanya memang di darat, bukan di laut. Demikian pula, perencanaan pembangunan PLTN di Indonesia selalu difokuskan untuk dibangun di darat. Hal ini logis ketika mempertimbangkan pulau-pulau besar yang butuh listrik dengan suplai besar.

Namun, bagaimana dengan pulau-pulau kecil yang membutuhkan suplai listrik yang andal? Ditambah lagi potensi bencana gempa dan tsunami yang sewaktu-waktu dapat menyerang negeri ini [1,2].

Dari sini, prospek PLTN terapung tampak cukup menjanjikan.

Ada beberapa jenis PLTN terapung. Namun, dari jenis-jenis yang ada, jenis offshore nuclear power plant (ONPP) tampak paling cocok untuk kawasan Indonesia [3]. PLTN terapung jenis ini memiliki unit reaktor nuklir (tunggal atau ganda) dan unit pembangkit yang dipasang di dalam kapal/tongkang. Listrik yang dibangkitkan oleh unit PLTN ini dapat digunakan untuk menggerakkan kapal dari dan menuju lokasi penggunaan, serta dialirkan ke jaringan listrik di lokasi tersebut.

Gambar 1. Konsep PLTN terapung MIT

Baca juga: Milestone Nuklir Cina: EPR dan AP1000 Pertama Di Dunia Mulai Beroperasi

PLTN yang dipasang di dalam kapal bukan konsep baru. Rusia sudah sejak lama menggunakan reaktor nuklir untuk propulsi kapal pemecah es [4]. Namun, ide ini kemudian berkembang untuk menyuplai listrik di daratan yang sulit terjangkau.

Ada beberapa potensi keunggulan dari penggunaan PLTN terapung untuk wilayah Indonesia.

Pertama, karena dipasang di atas kapal, kendala-kendala tentang pembebasan lahan dan sindrom NIMBY (Not In My Back Yard atau asal tidak di halaman belakang rumahku ) secara praktis tidak ada. Instalasi yang terpasang di darat hanya sambungan ke jaringan listrik saja. Isu fault teknonik yang menjadi perhatian dalam pembangunan PLTN pun otomatis lenyap. Gempa tidak lagi menjadi isu yang bisa dieksploitasi kalangan anti-nuklir.

Kedua, PLTN terapung dapat menjangkau kawasan-kawasan kepulauan kecil dan wilayah yang sulit dijangkau melalui darat, seperti beberapa kawasan di Papua. Karena PLTN terapung sudah dibangun dan terpasang di kapal sejak sebelum pemberangkatan, tidak ada pembangunan yang perlu dilakukan di kepulauan kecil dan wilayah yang sulit terjangkau tersebut selain fasilitas sambungan jaringan listrik. Jauh lebih memudahkan daripada harus membangun pembangkit di lokasi.

Kebutuhan bahan bakar nuklir sedikit dan siklus operasinya panjang, sekitar 24-36 bulan [5]. Jadi, bahan bakar untuk 10-20 tahun operasi dapat dimuat di dalam kapal. Atau, untuk alasan keamanan, bahan bakar baru dikirim ke lokasi menjelang akhir siklus bahan bakarnya. Sehingga, suplai bahan bakar sama sekali bukan masalah bagi PLTN terapung.

Baca juga: Mengenal Lebih Dekat Reaktor Daya Eksperimental, Reaktor Nuklir Desain Anak Negeri

Ketiga, PLTN terapung umumnya memiliki daya kecil, antara 35-120 MWe [6]. Daya itu cukup untuk daerah-daerah luar Jawa yang kebutuhan listriknya tidak sebanyak di Jawa. Membangun PLTN darat dengan daya lebih dari 250 MWe jelas sebuah pemborosan yang tidak perlu, jadi PLTN terapung memiliki skala rentang daya lebih pas.


Gambar 2. Konfigurasi reaktor PLTN terapung KLT40S

Keempat, lebih selamat dari tsunami. Sifat gelombang tsunami adalah baru mulai meninggi ketika mencapai air dangkal, tapi di air yang lebih dalam nyaris tidak terasa. Karena panjang gelombang tsunami di permukaan laut dalam sangat panjang, amplitudonya jadi kecil [7]. Sehingga, PLTN terapung yang doknya berada di permukaan laut dalam tidak akan terpengaruh oleh gelombang tsunami.

Eksistensi PLTN terapung pun berpotensi membantu peringatan dini tsunami. Sistem instrumentasi pendeteksi dini tsunami dapat dipasang di PLTN terapung. Karena tidak ada masyarakat yang bisa begitu saja naik ke atas kapal pengangkut PLTN ini, vandalisme dan pencurian terhadap komponen sistem peringatan dini tsunami bisa dikatakan tidak akan terjadi. Namun, hal ini butuh konfirmasi dari pakar di bidangnya.

Kelima, PLTN terapung dapat digunakan untuk desalinasi air laut. Hal ini penting untuk wilayah-wilayah yang sering kekurangan air bersih. Selain membangkitkan listrik, panas buangan dari PLTN terapung bisa digunakan untuk desalinasi air laut, menghasilkan air bersih yang layak digunakan untuk keperluan sehari-hari masyarakat [8].

Ke depannya, selain desalinasi air laut, PLTN terapung berpotensi juga memproduksi bahan bakar sintetis. Jadi, PLTN terapung digunakan untuk hidrolisis air dan memisahkan CO2 dari air laut. Hidrogen dan CO2 yang dihasilkan kemudian disintetis untuk menghasilkan bahan bakar mirip bensin untuk keperluan transportasi [9]. Keunggulan dari bahan bakar sintetis ini adalah netral emisi CO2 dan tidak ada kontamintasi pengotor.

Baca juga: Thorium, Bahan Bakar Nuklir Masa Depan

Keenam, level keselamatan tinggi. Kontras dengan asumsi sebagian orang ketika pertama mendengar PLTN terapung, tingkat keselamatannya tidak berkurang, malah mungkin lebih baik. Setidaknya, dari segi termohidrolik. Karena posisinya berada di atas permukaan laut, PLTN terapung memiliki akses pendingin yang secara praktis tidak terbatas. Air laut menjadi heat sink alami bagi reaktor nuklirnya. Ketika misalnya terjadi overheating, pendinginan reaktor dapat dilakukan tanpa harus khawatir kekurangan suplai pendingin eksternal.

Bagaimana kalau terjadi sebuah skenario tidak diinginkan yang menyebabkan kapalnya tenggelam? Bahan bakar nuklir akan tetap tersegel di dalam reaktor. Lalu, air laut secara otomatis akan mendinginkan reaktor sehingga pelelehan bahan bakar dapat dicegah (kecuali reaktor nuklir yang bahan bakarnya berbentuk lelehan, maka bahan bakarnya akan memadat). Ketiadaan pelelehan menyebabkan pelepasan radioaktivitas akan sangat minim, kalau bukan tidak ada. Air laut tidak akan terkontaminasi material radioaktif dari reaktor nuklir yang tenggelam.

Rusia dan Cina tengah mengembangkan PLTN terapung tipe ONPP [6]. Akademik Lomonosov, kapal bertenaga nuklir desain Rusia, diproyeksikan menjadi PLTN terapung pertama di dunia. Saat ini, Akademik Lomonosov telah melakukan pemuatan bahan bakar di dalam unit reaktor nuklir gandanya, siap diberangkatkan akhir tahun ini atau awal tahun depan ke Pevek, kota paling utara di Rusia [10].

Gambar 3. Akademik Lomonosov

Baca juga: Apa Benar Nuklir Mahal? Tanggapan Untuk Arcandra Tahar

Namanya teknologi, pasti ada saja kekurangannya. Karena tidak ada perimeter seperti di PLTN darat, sistem proteksi fisik PLTN terapung harus lebih diperhatikan. Masalah proteksi fisik sebaiknya juga dikoordinasikan dengan TNI. Perawatan pun mengharuskan si kapal dibawa kembali ke pabrikannya, walau memang jadwal perawatannya tidak sering. Masalah keselamatan radiasi juga mesti disosialisasikan dengan baik pada nelayan-nelayan yang melaut di sekitar sana, jika ada. Tujuannya supaya resistensi masyarakat sekitar terhadap PLTN terapung bisa diminimalisir dan tidak mudah diprovokasi oleh kalangan anti-nuklir.

Keunggulan-keunggulan di atas menunjukkan bahwa PLTN terapung sangat potensial untuk menyediakan listrik yang murah, bersih, selamat dan handal bagi penduduk Indonesia khususnya di luar Jawa, di daerah-daerah kepulauan dan wilayah yang sulit dijangkau lewat darat. Semoga dalam waktu tidak terlalu lama, kita bisa mengembangkannya sendiri menggunakan teknologi reaktor nuklir termutakhir, sehingga pemanfaatannya jadi lebih optimal untuk berbagai keperluan.

Referensi:

  1. S. Rohadi, “Studi Seismotektonik Sebagai Indikator Gempa Bumi di Wilayah Indonesia”, Jurnal Meteorologi dan Geofisika, vol. 10 no. 2, 2009, pp. 111-120.
  2. L. Hamzah et al, “Tsunami Catalog and Zones in Indonesia”, Journal of Natural Disaster Science, vol. 22 no. 1, 2000, pp. 25-43.
  3. K. H. Lee, “Recent Advances in Ocean Nuclear Power Plants”, Energies, vol. 8, 2015, pp. 11470-11492.
  4. O. Bukharin, “Russia’s Nuclear Icebreaker Fleet”, Science and Global Security, vol. 14, 2006, pp. 25-31.
  5. M. R. Oktavian et al, “Cogeneration Power-Desalination in Small Modular Reactors (SMRs) for Load Following in Indonesia”, presented in The 4th International Conference on Science and Technology (ICST) 2018, Yogyakarta, Indonesia.
  6. S. Banoori et al, Advances in Small Modular Reactor Technology Developments. IAEA, Vienna, 2016.
  7. Tsunamis. Diakses dari http://earthsci.org/education/teacher/basicgeol/tsumami/tsunami.html
  8. S. Nisan et al, “Sea-water desalination with nuclear and other energy sources: the EURODESAL project”, Nuclear Engineering and Design, vol. 221 no. 1-3, 2003, pp. 251-275.
  9. J. Morgan, Zero emission synfuel from seawater, Diakses dari https://bravenewclimate.com/2013/01/16/zero-emission-synfuel-from-seawater/\
  10. World Nuclear News. Russia loads fuel into floating power plant. Diakses dari (http://www.world-nuclear-news.org/Articles/Russia-loads-fuel-into-floating-power-plant)

 

Mengganti Energi Nuklir Dengan Energi Terbarukan Bukanlah Ide Bagus—Setidaknya di Inggris dan Swedia

Mengganti Energi Nuklir Dengan Energi Terbarukan Bukanlah Ide Bagus—Setidaknya di Inggris dan Swedia

Perubahan iklim menjadi salah satu isu lingkungan yang paling disorot di abad 21. Pembakaran energi fosil secara besar-besaran sejak dimulainya Revolusi Industri telah menyebabkan konsentrasi gas rumah kaca (GRK) di atmosfer semakin bertambah. Alih-alih berkurang, pembakaran energi fosil semakin lama semakin bertambah seiring dengan pertumbuhan jumlah penduduk, yang meniscayakan peningkatan kebutuhan energi. Tercatat, pada tahun 2017, lebih dari 33 milyar ton CO2 dilepaskan ke atmosfer sebagai imbas konsumsi energi fosil [1]. Untuk menambah kabar buruk, tren selama sembilan tahun terakhir cenderung terus meningkat!

Gambar 1. Emisi Karbon Dunia 2009-2017 (sumber: BP Statistical Review of World Energy 2018)

Untuk mencegah dampak katastropik yang dapat disebabkan perubahan iklim, seruan revolusi energi menuju energi bersih pun banyak didengungkan. Namun, ada hal yang menggelikan dalam seruan revolusi ini: energi nuklir, sebagai energi yang tidak melepaskan emisi GRK, dikriminalisasi nyaris sama buruknya dengan energi fosil. Bahkan, laporan Intergovernmental Panel on Climate Change (IPCC) terbaru secara mengerikan melemparkan penyesatan-penyesatan terhadap energi nuklir [2]!

Baca juga Seberapa Besar Radiasi PLTN Yang Dilepaskan Ke Lingkungan?

Bias anti-nuklir ini sebenarnya mengherankan, karena justru berdasarkan analisis IPCC sendiri [3], energi nuklir adalah energi paling bersih, hanya melepaskan 12 g CO2 ekivalen/kWh listrik, setara dengan energi bayu. Lalu, kontras dengan pemahaman publik, energi nuklir adalah energi paling selamat sejauh ini. Hal ini disebabkan angka kematian per TWh energi nuklir paling rendah, yakni 0,04 kematian per TWh [4].

Kecenderungan irasional anti-nuklir telah menyebabkan sebagian negara memilih untuk phase-out energi nuklir dan berniat menggantinya dengan so-called “energi terbarukan”, yakni energi bayu dan energi surya. Mengganti PLTN dengan turbin angin dan panel surya. Walau sekilas ide ini terkesan menarik dan populer, tapi tidak meyakinkan berdasarkan matematika. Setidaknya, sebagaimana studi yang dilakukan di Inggris dan Swedia.

Tim Yeo, Ketua New Nuclear Watch Institute (NNWI), lembaga think-tank nuklir yang berbasis di Inggris, menyoroti ide untuk mempensiunkan PLTN-PLTN yang ada di Inggris Raya dan menggantinya dengan turbin angin plus gas alam [5]. Kenapa harus ada gas alam? Karena sifat alami turbin angin yang intermiten—angin tidak berembus 24 jam dalam sehari, sehingga waktu kosong itu harus diisi dengan pembangkit lain. Pembangkit apa? Ya gas alam itu, karena kemampuannya untuk ramp-up dan ramp-down yang cepat.

Tapi apakah itu pilihan yang tepat? NNWI menganalisis skenario emisi CO­2 di Inggris pada tahun 2030 dalam dua skenario. Pertama, ketika energi nuklir dipensiunkan total dari jaringan listrik pada tahun 2030. Hal ini memungkinkan terjadi, karena setengah dari kapasitas PLTN di Inggris akan memasuki masa pension pada tahun 2025. Jadi, listrik di Inggris hanya berasal dari energi bayu dan gas alam saja. Pada skenario ini, energi bayu diasumsikan memiliki daya terpasang 30 GWe [5].

Baca juga Benarkah Nuklir Mahal? Tanggapan Untuk Arcandra Tahar

Skenario kedua, energi nuklir tidak dipensiunkan melainkan diganti dengan yang baru, baik itu Hinkley Point C, Wylfa Newydd dan lainnya. Sehingga, nuklir akan menjadi bauran listrik bersama-sama energi bayu dan gas alam. Namun, pada skenario ini, energi bayu hanya akan berkontribusi sebesar 25 GWe [5].

Dalam studi ini, NNWI menganalisis skenario mana yang paling murah harga listriknya dan emisi CO2 yang dihasilkan paling rendah. Hasil studi terkait emisi CO2 adalah sebagai berikut.

Gambar 2. Emisi CO2 antara skenario nuklir (kiri) dan pensiun nuklir (kanan)

Jelas sekali bahwa emisi CO2 jauh lebih banyak dihasilkan jika nuklir dipensiunkan. Apa pasal? Energi bayu tidak bisa berdiri sendiri, butuh backup pembangkit lain. Semakin tinggi bauran energi bayu, semakin tinggi pula bauran gas alam. Artinya, semakin besar polusi yang dihasilkan. Studi yang dilakukan Yeo menunjukkan bahwa emisi CO2 akan naik dai 51 g CO2/kWh pada skenario bauran nuklir menjadi 186 g CO2/kWh pada skenario nuklir pensiun. Emisinya naik 265% dari kondisi awal! [5]

Tidak hanya membuat emisi naik, tapi opsi pensiun nuklir juga menyebabkan harga listrik naik. Jika masih menggunakan nuklir, nilai levelised cost of electricity (LCOE) hanya sebesar GBP 82/MWh atau GBP 8,2 pence/kWh. Dirupiahkan, sekitar Rp 1.660/kWh, termasuk murah untuk Eropa Barat. Sementara, menggunakan opsi pensiun nuklir, LCOE naik menjadi GBP 95/MWh atau GBP 9,5 pence/kWh. Dirupiahkan, sekitar Rp 1.921/kWh [5].

Gambar 3. LCOE pada skenario pensiun nuklir (atas) dan nuklir (bawah)

Kenaikan tarif listrik ini mudah dipahami. Pertama, energi nuklir masih lebih murah daripada energi bayu, terlepas dari propaganda kalangan pro-“energi terbarukan”. Pasalnya, energi bayu tidak beroperasi setiap saat, sementara nuklir bisa beroperasi 24×7. Sehingga, load factor nuklir lebih tinggi.

Kedua, pada skenario pensiun nuklir, gas mengambil alih setengah dari kapasitas pembangkitan di Inggris. Harga gas alam yang mahal ketika dikonversi menjadi biaya bahan bakar akhirnya menjadi beban utama bagi jaringan listrik Inggris, seandainya skenario seperti ini terjadi.

Jadi jelas, mempensiunkan nuklir demi “energi terbarukan” bukan ide bagus di Inggris. Karena realitanya, energi bayu tetap membutuhkan energi fosil berupa gas alam sebagai backup.

Bagaimana di Swedia?

Pada tahun 2015 lalu, muncul wacana untuk menutup empat PLTN tertua di Swedia pada tahun 2020, termasuk pelarangan untuk membangun PLTN baru. Walau akhirnya wacana ini berubah pada tahun 2016, dengan diizinkannya dibangun hingga 10 PLTN baru untuk menggantikan PLTN yang ditutup, sebuah studi yang dilakukan F. Wagner dan E. Rachlew telah dipublikasikan pada tahun yang sama, untuk menilai skenario apabila energi nuklir di Swedia diganti dengan energi bayu [6].

Studi ini mengasumsikan energi nuklir diganti sebagian dan sepenuhnya oleh energi bayu, sembari menganalisis apakah energi hidro bisa menyesuaikan pembangkitan listrik dari energi bayu yang bersifat intermiten. Basisnya adalah data beban kelistrikan pada tahun 2013, yang didominasi oleh energi nuklir dan hidro. Pembangkitan energi hidro diasumsikan tetap, sehingga yang dinaikkan adalah bauran energi bayu terhadap nuklir [6].

Gambar 4. Beban listrik Swedia standar

Hasilnya, ketika energi nuklir dipangkas setengahnya, kapasitas energi bayu harus dinaikkan lebih dari dua kali lipat, dari 4,47 GWe pada saat itu menjadi 11,2 GWe [6]. Pada kondisi ini, dibutuhkan sedikit backup energi karena keterbatasan pembangkitan hidro. Backup ini kemungkinan besar adalah gas alam, yang seperti dinyatakan sebelumnya, dapat ramp up dan ramp down dengan cepat menyesuaikan kebutuhan jaringan listrik.

Gambar 5. Beban listrik Swedia dengan nuklir dipangkas setengahnya. Backup daya mulai digunakan.

Ketika nuklir dipangkas habis, kapasitas energi bayu harus ditingkatkan menjadi 22,3 GWe. Kondisi ini membutuhkan backup daya sebesar 8,6 GWe yang memiliki faktor kapasitas dan keekonomisan rendah [6]. Lagi-lagi yang digunakan pasti gas alam. Backup daya juga harus ada demi ‘menghaluskan’ gradien daya yang tajam, akibat sifat intermiten energi bayu.

Gambar 6. Beban listrik Swedia dengan nuklir dihilangkan. Penggunaan backup daya lebih tinggi lagi untuk mengompensasi sifat intermiten energi bayu.

Backup daya menggunakan gas alam bersifat kontraproduktif dengan usaha memitigasi perubahan iklim. Pasalnya, emisi spesifik listrik Swedia naik dari 23 g CO2/kWh menjadi 34 g CO2/kWh, naik 50% [6]. Tidak sebesar kenaikan di Inggris, tapi cukup signifikan dibandingkan emisi pada awalnya.

Baca juga Mengenal Reaktor Daya Eksperimental, Reaktor Nuklir Desain Anak Negeri

Untuk mengganti energi nuklir berkapasitas 9 GWe di Swedia, dibutuhkan 22,3 GWe energi bayu dan 8,6 GWe pembangkit gas alam. Ditambah lagi, instalasi energi bayu sebesar itu lebih besar dua kali lipat daripada kapasitas terpasang energi bayu dan surya per kapita di Jerman pada tahun 2016. Mengingat Jerman mengalami kenaikan tarif listrik karena penggunaan energi bayu dan surya, bisa dibayangkan kenaikan tarif listrik di Swedia dengan kapasitas spesifik dua kali lipatnya.

Jadi, di Swedia pun bukan ide bagus untuk mengganti energi nuklir dengan energi bayu.

Kedua studi ini menyoroti hal yang sama, bahwa so-called “energi terbarukan” tidak bisa berdiri sendiri untuk menggantikan energi fosil. Pasti harus dibarengi dengan penggunaan energi fosil. Padahal, penggunaan energi fosil justru bertentangan dengan usaha untuk mitigasi perubahan iklim. Alih-alih mereduksi emisi karbon, yang ada justru membuatnya meningkat!

Mengganti energi nuklir dengan so-called “energi terbarukan” tidak pernah berimbas baik dan bertentangan dengan fundamental mitigasi perubahan iklim, yakni memangkas emisi karbon. Justru, energi nuklir telah terbukti secara historis berdampak positif pada mitigasi perubahan iklim dan mencegah kematian jutaan manusia akibat polusi energi fosil [7]. Bias anti-nuklir yang melandasi tindakan irasional ini harus segera dihentikan. Kebijakan energi harus dibuat berdasarkan sains, bukan bias irasional.

 

Referensi

  1. British Petroleum. BP Statistical Review of World Energy June 2018. London: BP.
  2. Michael Shellenberger. Anti-Nuclear Bias of UN and IPCC Is Rooted In Cold War Fears of Atomic and Population Bombs. (https://www.forbes.com/sites/michaelshellenberger/2018/10/09/anti-nuclear-bias-of-u-n-ipcc-is-rooted-in-cold-war-fears-of-atomic-and-population-bombs/#60efd4f65dd6). Diakses 10 Oktober 2018.
  3. Intergovernmental Panel on Climate Change Working Group III. 2014. Mitigation of Climate Change, Annex III: Technology – specific cost and performance parameter. Cambridge: Cambridge University Press.
  4. Brian Wang. Update of Death per Terawatt hour by Energy Source. (https://www.nextbigfuture.com/2016/06/update-of-death-per-terawatt-hour-by.html). Diakses 10 Oktober 2018.
  5. The New Nuclear Watch Institute. 2018. The False Economy of Abandoning Nuclear Power: Techno-Zealotry and the Transition Fuel Narrative. London: NNWI.
  6. F. Wagner dan E. Rachlew. 2016. Study on a hypothetical replacement of nuclear electricity by wind power in Sweden. European Physical Journal Plus 131: 173.
  7. R Andika Putra Dwijayanto. Mengukur Dampak Iklim Dari Pemanfaatan Energi Nuklir. (https://warstek.com/2018/06/11/nukliriklim). Diakses 11 Oktober 2018.

Teknologi Nuklir Untuk Perubahan Iklim

Teknologi Nuklir Untuk Perubahan Iklim

Halo sahabat Warstek, apa kabar ? Pasti baik yah.  Kali ini kita akan membahas masalah tentang Nuklir sebagai perbaikan sumber daya masa kini. Kalian pasti berpikir, kok Nuklir? Bukannya Nuklir itu cuma menghancurkan saja. Terlepas dari buruknya pemakaian Nuklir di masa lalu, sekarang kita menemukan bahwa Nuklir bukan hanya di gunakan untuk kerusakan tapi Nuklir sekarang berkembang sebagai sumber daya yang menjanjikan untuk dunia dan indonesia loh. Oke kita langsung ke pembahasan saja yah.

Apa Itu Nuklir Dan Reaksi Nuklir Sebenarnya ?

Nuklir? Apa sih sebenarnya Nuklir itu? Pada umumnya masyarakat awam mengenal istilah Nuklir dari sejarah Perang Dunia II. Pada saat itu, dua buah bom Nuklir meledak atau diledakkan oleh tentara Sekutu (Amerika Serikat) masing-masing di kota Hiroshima pada tanggal 6 Agustus 1945 dan Nagasaki pada tanggal 9 Agustus 1945.

Bagi bangsa Indonesia, peristiwa pengeboman dua kota di Jepang tadi juga terkait langsung dengan arah perjalanan bangsa ini. Dalam waktu yang sangat berdekatan dengan kekalahan tentara Jepang terhadap kekuatan Sekutu pada Perang Dunia II itulah bangsa Indonesia memproklamirkan kemerdekaannya pada tanggal 17 Agustus 1945, setelah sebelumnya selama tiga setengah abad dijajah oleh Belanda dan selama tiga setengah tahun dijajah oleh Jepang.

Kok bahasnya masalah Kemerdekaan,penjajahan,nagasika dan hiroshima sih?. hehehe. iya tapi itulah memang sebenarnya awal kita mengenal yang namanya Nuklir. oke tanpa berpanjang lama kita akan menjelaskan apa sih itu Nuklir. Kata Nuklir berarti bagian dari atau yang berhubungan dengan nukleus atom (inti atom).. Dalam fisika Nuklir, sebuah reaksi Nuklir adalah sebuah proses di mana dua nuklei ataupartikel Nuklir bertubrukan.

Sejarah Nuklir 

Diatas Sebenarnya kita sudah membahas sedikit sejarah Nuklir tapi kita akan membahas Nuklir dari sisi keilmuanya dan lansung saja .Sejarah perkembangan ilmu pengetahuan dan teknologi Nuklir bermula ketika Otto Hahn dan Fritz Strasmann pada tahun 1938 menemukan reaksi pembelahan inti atom.

Mereka melakukan penelitian dengan cara menembaki unsur Uranium-235 (U-235) dengan partikel neutron yang bergerak sangat lambat. Dari hasil penembakan tersebut mereka mendapatkan bahwa inti atom U-235 pecah menjadi inti-inti atom yang lebih kecil dan massanya lebih ringan dibandingkan U-235, lalu dipancarkan dua hingga tiga buah partikel neutron baru yang bergerak sangat cepat (neutron ini disebut neutron cepat), hingga pada akhirnya dilepaskanlah energi dalam bentuk panas sebesar 200 Mega electron-Volt (MeV).

Reaksi yang ditemukan oleh Hahn dan Strasmann ternyata sangat berlainan dengan reaksi kimia biasa yang sudah dikenal pada saat itu. Pada reaksi kimia biasa, reaksi itu terjadi antara unsur-unsur kimia, dimana unsur-unsur yang bereaksi masih dapat ditemukan dalam senyawa hasil reaksi.

Reaksi pembelahan inti atom U-235 tersebut disebut reaksi Nuklir, karena setelah terjadi reaksi pembelahan tidak ditemukan lagi adanya inti atom U-235. Reaksi ini sering kali disebut juga sebagai reaksi fisi (pembelahan) karena inti U-235 pecah menjadi dua inti yang lebih kecil.

Dari penemuan reaksi inilah persamaan kesetaraan massa dan energi yang dirumuskan oleh Albert Einstein dengan persamaan: E = mc2 (E = energi dalam Joule, m = massa dalam kilogram, dan c = kecepatan cahaya yang nilainya 300.000 kilometer per detik) dapat dibuktikan dan diakui kebenarannya oleh kalangan ilmuwan secara luas.

Kenapa Kita Perlu Nuklir Untuk Perubahan Iklim ?

Munkin kalian bertanya kenapa kita perlu merubah iklim ? Itu karna  pemanasan global dan dampaknya bagi kelangsungan hidup sangat diperlukan karna apabila kita terus membiarkan iklim terjadi begitu saja maka akan terjadi berbagai bencana yang akan memusnahkan bumi oleh karna itu kalian harus menjaga bumi ini yah.

Nuklir Untuk Perubahan Iklim 

Saat ini, sumber energi rendah karbon membentuk sedikit 5 persen dari produksi energi primer dunia, memasok hanya 11 persen dari listrik global.

Dengan tantangan perubahan iklim menggigit di tumit kami, para penulis studi baru berpendapat bahwa sekarang adalah waktu untuk mengambil pandangan baru pada teknologi karbon rendah yang kontroversial.

Kebutuhan akan pengurangan emisi karbon global yang cepat dan drastis menjadi semakin sulit ketika pemerintah juga harus memastikan perluasan akses energi ke miliaran orang. Teka-teki telah meninggalkan kita sedikit pilihan lain.

Meskipun penelitian ini tidak mengusulkan untuk meninggalkan solusi rendah atau nol-karbon lainnya, tetapi ini menyarankan untuk membuang energi Nuklir ke dalam campuran – setidaknya sampai potensi teknologi baru tersebut dapat sepenuhnya terwujud.

Ketika datang ke sektor listrik, energi Nuklir bisa memiliki dampak besar. Pada pertengahan abad, konsumsi listrik menjadi hampir dua kali lipat, meningkat hingga 45 persen.

Energi terbarukan hanya dapat memenuhi begitu banyak permintaan itu. Pada 2050, angin, matahari, dan penyimpanan baterai diperkirakan hanya memasok separuh listrik dunia.

Jika energi Nuklir dikecualikan sebagai solusi rendah karbon lainnya, temuan itu mengungkapkan bahwa itu dapat menyebabkan biaya rata-rata listrik untuk meningkat secara dramatis di seluruh dunia.

 Nuklir Di Indonesia 

Teknologi Nuklir merupakan sarana penting dalam mendukung program pembangunan di negara berkembang, seperti: Indonesia. Namun, perkembangan tersebut menimbulkan polemik di masyarakat nusantara. Ancaman yang ditimbulkan, sedangkan peluang yang didapatkan, selalu menjadi hal yang dipertanyakan. Isu mengenai ancaman, hal yang benar dan patut dikhawatirkan.

Namun, Dwight D. Einshower pada 8 desember tahun 1953 dalam pidatonya, mengatakan: “Ancaman besar yang dihasilkan dari penggunaan energi Nuklir dapat menjadi keuntungan besar bagi seluruh umat manusia.” Tahukah kamu? Menurut asosiasi Nuklir dunia: Indonesia bisa penuhi kebutuhan listrik dengan Nuklir.

Dilatar belakangi oleh hal tersebut, indonesia memiliki peluang melipatgandakan kapasitas pembangkit listrik dan melakukan ekspansi, dengan tujuan untuk memperbaiki akses terhadap listrik dan memenuhi permintaan ekonomi.Dewasa ini, Indonesia kaya akan cadangan Nuklir. Selain memiliki cadangan 70.000 ton uranium, Indonesia juga memiliki 210.000-280.000 ton thorium.(iar)

Oke itulah tadi sedikit pembahasan panjang mengenai Nuklir semoga dengan membaca artikel di atas itu dapat membantu teman teman dalam memahami Nuklir bukan hanya dari segi keburukan yang di timbulkan saja. Terimah Kasih.

[1] chikhungunya.wordpress https://chikhungunya.wordpress.com/2010/03/26/apa-sih-Nuklir-itu/

[2] wikipedia https://id.wikipedia.org/wiki/Nuklir

[3] SainsIndonesia https://sainsindonesia.wordpress.com/2010/10/06/peran-Nuklir-pada-mitigasi-perubahan-iklim/

[4] SienceAlert https://www.sciencealert.com/nuclear-energy-must-be-part-of-the-climate-change-solution-mit-study-suggests

Dokumen Rahasia Tahun 1964: Bom Nuklir Amerika Hendak Musnahkan Populasi Uni Soviet dan China

Dokumen Rahasia Tahun 1964: Bom Nuklir Amerika Hendak Musnahkan Populasi Uni Soviet dan China

Sejumlah dokumen rahasia Amerika Serikat (AS) yang tidak diklasifikasikan mengungkap rencana Pentagon menghancurkan Uni Soviet dan China dengan bom nuklir. Rencana itu dibuat tahun 1964, namun batal dijalankan. Uni Soviet telah runtuh tahun 1991 dan sekarang bernama Rusia.

Rencana perang nuklir dirancang oleh Angkatan Darat AS pada tahun 1964. Tujuan pemboman nuklir kala itu adalah menghancurkan potensi industri dan melenyapkan sebagian besar populasi kedua negara tersebut.

Dokumen rahasia tersebut baru-baru ini diterbitkan oleh proyek Arsip Keamanan Nasional Universitas George Washington. Dokumen-dokumen rahasia itu menunjukkan bagaimana Pentagon mempelajari opsi “layak” untuk menghancurkan masyarakat Uni Soviet dan China.

Tujuan penghancuran Uni Soviet dikarenakan Uni Soviet merupakan “masyarakat yang hidup” dan targetnya  memusnahkan 70 persen dari luas lantai industrinya selama serangan nuklir pre-emptive dan pembalasan. Tujuan yang sama juga untuk untuk China, mengingat ekonominya saat itu berbasis agraris.

Menurut rencana, AS akan memusnahkan 30 kota besar China, membunuh 30 persen populasi perkotaan dan mengurangi separuh kemampuan industrinya. “Keberhasilan pelaksanaan serangan nuklir berskala besar akan memastikan bahwa China tidak lagi menjadi negara yang layak,” bunyi ulasan dokumen tersebut, seperti dikutip Russia Today  (2/9/2018) .

Staf Gabungan AS kala itu telah mengusulkan untuk menggunakan “hilangnya populasi sebagai tolak ukur utama untuk keefektifan dalam menghancurkan masyarakat musuh yang kolateral terhadap kerusakan industri”.

Menurut para peneliti di Universitas George Washington, ide yang mengkhawatirkan itu berarti bahwa selama pekerja dan manajer kota terbunuh, kerusakan aktual untuk target industri mungkin tidak terlalu penting.

Rencana tahun 1964 tidak menyebutkan tingkat korban musuh yang diantisipasi, tetapi—seperti yang dicatat para peneliti—perkiraan sebelumnya dari tahun 1961 memproyeksikan bahwa serangan AS akan membunuh 71 persen penduduk di pusat-pusat perkotaan utama Soviet dan 53 persen penduduk di China.

Pentagon hingga tahun ini masih sangat bergantung pada pencegahan nuklir, dan seperti pada 1960-an, strategi nuklir AS masih menganggap kemampuan militer Rusia dan China sebagai tantangan utama yang dihadapi oleh Washington.

Dokumen Nuclear Posture Review terbaru pemerintah Donald Trump yang diadopsi pada bulan Februari 2018 lalu menggarisbawahi ancaman utama yang berasal dari Beijing dan Moskow. Dokumen, yang menyebutkan Rusia 127 kali itu, mengutip modernisasi persenjataan nuklir Rusia sebagai masalah bagi AS.

Strategi nuklir Washington tersebut juga memungkinkan AS untuk melakukan serangan nuklir tidak hanya dalam menanggapi serangan nuklir musuh, tetapi juga sebagai tanggapan terhadap serangan strategis non-nuklir yang signifikan di AS, sekutu dan mitra.

Dokumen Nuclear Posture Review AS telah dikecam  oleh Rusia dan China. Moskow mengecam strategi itu sebagai sikap konfrontatif. Sedangkan Beijing menggambarkan pendekatan Pentagon sebagai contoh dari mentalitas Perang Dingin.

© Sindonews.com

Artikel ini berasal dan telah dipublikasikan di Sindonews.com