Hukum Gerak Planet dan Satelit

Fakta-Fakta

Gambar berikut ini terdapat beberapa fakta gerak planet dan satelit berdasarkan fenomena yang dapat kita amati dan rasakan dalam kehidupan sehari hari :

Gerak Planet-Planet Mengelilingi Matahari
Gambar 1Gerak Planet-Planet Mengelilingi Matahari
  • Keteraturan sistem tata dan planet tetap beredar pada lintasannya dan tidak terlempar keluar/saling bertabrakan
  • Matahari sebagai pusat tata surya, sedangkan planet dan satelit dan lainnya berputar mengelilinginya
  • Planet planet mengelilingi matahari pada lintasan orbitnya masing masing
  • Bumi berada pada lintasan ketiga dari matahari
  • Selain berevolusi, bumi dan planet lainnya juga berputar tehdapa porosnya
  • Selama berevolusi planet juga berotasi terhadap sumbunya
  • Bumi berevolusi terhadap matahari selama 365 hari
  • Bumi berputar pada porosnya menyebabkan terjadinya siang dan malam selama 24 jam
  • Bulan merupakan satelit alami bumi
  • Bulan berevolusi terhadap bumi selama 29,5 hari
Planet dan matahari
Gambar 2. Posisi matahari, bumi dan bulan

Pada Kehidupan sehari-hari, kita pernah melihat buah kelapa jatuh dengan sendirinya dari pohonnya, dan kita juga pernah melakukan melempar bola ke atas, dan bola tersebut akan kembali jatuh ke titik lemparannya. Kita berjalan dengan tenang pada permukaan bumi, melihat matahari terbit dari arah timur dan terbenam arah barat atau melihat bulan malam hari. Kenapa hal itu bisa terjadi? Kenapa bumi dan matahari bisa tidak saling bertabrakan? Sekitar tahun 1686, seorang ilmuwan ahli fisika dan matematika Inggris yaitu Sir Isaac Newton (1642-1727), selain ia mengemukakan ketiga hukum Newton, ia juga mengemukakan hukum mengenai gaya gravitasi.

Percepatan Sentripetal

Pada saat ia mengamati buah apel yang jatuh di tamannya,Newton menyadari bahwa terdapat gaya yang bekerja pada pohon apel. Newton menduga bahwa gaya ini pulalah yang menyebabkan bagaimana bulan tetap berada pada orbitnya pada saat mengitari bumi, dan ia juga berpikir bagaimana planet-planet dapat mengitari matahari dengan tetap berada dalam lintasan elipsnya. Ketika Newton sedang berfikir tentang gaya tarik yang bekerja pada suatu benda yang seolah tidak berhubungan dengan gaya yang bekerja pada bulan dan planet, ia mengamati bahwa apabila suatu benda yang berada pada ketinggian tertentu di atas permukaan bumi di lepaskan, maka benda tersebut akan jatuh bebas menuju permukaan bumi. Hal tersebut karena pengaruh adanya gaya gravitasi bumi. Percepatan gravitasi setiap benda di permukaan bumi kira-kira sebesar 9,8 m/s2. Percepatan bulan menuju bumi, dapat menggunakan percepatan sentripetal bulan sebagai berikut.

blank

Nilai Perbandingan percepatan bulan menuju bumi dan percepatan benda pada permukaan bumi sebagai berikut:

blank

Gaya Gravitasi

Newton menyatakan bahwa besarnya gaya gravitasi yang bekerja pada suatu benda (  berbanding terbalik dengan kuadrat jarak benda tersebut (r) dari pusat bumi.

blank

Newton menyimpulkan bahwa besar gaya gravitasi yang bekerja di antara bumi dan benda tersebut sebagai berikut.

blank

Persamaan dapat berlaku secara umum untuk dua buah benda yang tarik menarik satu sama lain dengan gaya tarik gravitasi , sehingga persamaan di atas menjadi :

blank

Karena gaya gravitasi berbanding lurus dengan massa kedua benda, maka semakin besar massa salah satu benda semakin besar pula gaya gravitasi yang bekerja pada kedua benda tersebut dan karena gaya gravitasi berbanding terbalik dengan jarak kuadrat yang memisahkan kedua benda, maka semakin besar jarak antara kedua benda semakin lemah gaya gravitasi yang bekerja pada kedua benda tersebut.

Newton mengemukakan Hukum Gravitasi Newton  yang menyatakan “ Gaya gravitasi antara dua benda merupakan gaya tarik-menarik yang besarnya berbanding lurus dengan massa masing-masing benda dan berbanding terbalik dengan kuadrat jarak antara kedua pusat benda tersebut “.

blank

Pada hukum gravitasinya, Newton belum dapat menentukan besarnya nilai tetapan gravitasi umum (G). Akan tetapi, penentuan nilai tetapan gravitasi umum, pertama kali oleh Henry Cavendish (1731 – 1810) seorang ahli fisika dan kimia asal Inggris pada tahun 1798, setelah Newton meninggal. Menggunaka alat untuk menentukan tetapan gravitasi yaitu Neraca Cavendish. Nilai G yang yaitu

blank
Ilustrasi Gravitasi Newton pada planet
Gambar 5. Ilustrasi Gravitasi Newton

Resultan gaya Gravitasi pada suatu benda

Bagaimana Jika dua buah suatu benda bekerja dua buah gaya gravitasi atau lebih? Misalnya pada m1 bekerja  gaya gravitasi F12 yang oleh m2 dan gaya gravitasi F13 yang oleh benda  m1  yang oleh benda m3. Karena F12 dan F13 adalah vektor, maka gaya yang bekerja pada m1 haruslah resultan dari kedua gaya ini secara vektor.  Resultan gaya gravitasi jika searah dan mendatar :

blank
blank
blank
blank
blank

Medan Gravitasi

Gaya gravitasi pada suatu benda di sebuah titik dalam ruang dengan sifat ruang itu sendiri. Misalkan kita taruh benda bermassa M dalam suatu ruang, maka benda itu akan menghasilkan medan yang menyebar di sekitar benda itu dalam ruang.

Medan Gravitasi sebuah planet
Gambar 6. Medan Gravitasi Benda Bermassa m

Medan hadir walaupun tidak ada benda lain di dalam ruang. yang menyebar dari benda bermassa dan memenuhi ruang inilah sebagai medan gravitasi. Jika anda tempatkan benda bermassa m dalam ruang tersebut maka benda m akan tertarik menuju benda M. Dengan demikian, medan gravitasi sebagai ruang di sekitar suatu benda bermassa yang mana benda bermassa lainnya dalam ruang itu akan mengalami gaya gravitasi.

Kita dapat mengatakan bahwa medan gravitasi adalah sifat dari ruang. Kita tidak perlu lagi memfokuskan bagaimana gaya gravitasi bergantung pada massa dan jarak, melainkan kita dapat memfokuskan pada ruang itu sendiri dan bagaimana sifat ruang (atau medan) mempengaruhi adanya benda-benda di dekat ruang atau jauh dari ruang. Dengan demikian, massa sebagai sumber medan gravitasi.

Bagaimana Cara Kita Memvisualisasi Medan Gravitasi?

Medan gravitasi termasuk medan vektor, yaitu medan yang di setiap titiknya memiliki besar dan arah. Kita dapat menampilkan medan gravitasi secara visual dengan

bantuan garis-garis berarah (anak panah). Anak panah- anak panah akan menampilkan arah dan besar medan gravitasi pada berbagai titik dalam ruang. Tiap anak panah menampilkan medan gravitasi tepat di ekornya. Panjang anak panah sebanding dengan besar medan di setiap titik.

Cara lain untuk memvisualisasi medan gravitasi sebagai medan vektor adalah dengan menggunakan garis-garis medan (garis-garis gaya). Garis-garis medan gravitasi adalah garis-garis bersambungan (kontinu) yang selalu berarah menuju ke massa sumber medan gravitasi.

Kuat Medan Gravitasi

Besaran yang mewakili medan gravitasi adalah kuat medan gravitasi. Kuat medan gravitasi pada titik apa saja dalam ruang adalah sebagai gaya gravitasi per satuan massa pada suatu massa uji m.

Massa M dan Massa Uji m
Gambar 7. Massa M dan Massa Uji m

Pada suatu titik dalam ruang yang mana suatu massa uji m mengalami gaya gravitasi F, kuat medan gravitasi g adalah:

blank

Misalkan kita mengukur gaya gravitasi yang bekerja oleh suatu benda diam bermassa M pada benda bermassa uji m yang seolah-olah bergerak ke berbagai titik dalam medan gravitasi, maka gaya gravitasi itu adalah:

blank

Masukan F ini ke dalam persamaan sebelumnya, kita peroleh rumus untuk menghitung kuat medan gravitasi oleh massa sumber M pada berbagai titik dalam medan, yaitu:

blank

Garis kerja kuat medan gravitasi terletak pada garis hubung yang menghubungkan titik kerja dan pusat massa benda, dan arah percepatan gravitasi selalu menuju ke pusat benda (lihat gambar). Misalnya jari-jari bumi r = 6400 km = 6,4 x 106 dan bermassa M = 6,0 x 1024 kg, akan kita peroleh percepatan gravitasi di permukaan bumi 9,8 N/kg.

Kuat medan gravitasi merupakan besaran vektor, sehingga bila suatu benda terpengaruh oleh gaya gravitasi beberapa benda lain, maka besarnya kuat medan gravitasi yang terjadi benda tersebut merupakan resultan vektor kuat medan gravitasi yang bekerja pada benda itu.

Kuat medan jika beberapa benda segaris

blank

Besarnya kuat medan gravitasi yang dialami benda B adalah:
gB = gBC – gBA

blank

Kuat medan gravitasi juga merupakan besaran vektor. Misalkan sebuah benda uji mp diletakkan di dekat dua benda bermassa m1  dan m2 sehingga sedemikian rupa membentuk sudut α. Maka resultan kuat medan gravitasi yang di timbulkan oleh m1  dan m2  dapat di gambarkan sebagai berikut:

blank
Gambar 8 Resultan medan gravitasi

Secara  matematis  resultan  kuat  medan  gravitasi  berdasarkan gambar di atas dirumuskan:

blank

Mengapa Berat Benda Sedikit Berbeda di Berbagai Tempat di Permukaan Bumi?

Jika kita ukur ternyata berat suatu benda sedikit berbeda di berbagai tempat di permukaan Bumi. Sebagai contoh, di kutub utara sebuah benda bermassa 1 kg memiliki berat 9,83 N, tetapi di khatulistiwa hanya 9,78 N. Dengan demikian, berat benda berubah 0,5 persen ketika berpindah dari kutub ke khatulistiwa. Telah anda ketahui bahwa berat benda adalah gaya gravitasi Bumi yang bekerja pada suatu benda, yang dinyatakan oleh w = mg. Massa m adalah besaran yang tetap dimana saja. Karena berat benda berbeda sedikit, maka pasti faktor g yang berubah sedikit di berbagai tempat di permukaan bumi. Pengukuran-pengukuran yang teliti menunjukkan bahwa Bumi tidak tepat benar berbentuk bola, tetapi agak pepat pada kedua kutubnya dan agak mengembang di sekitar khatulistiwa. Itulah sebabnya garis tengah khatulistiwa lebih besar daripada garis tengah kutub. Garis tengah khatulistiwa 12.757 km, sedang garis tengah kutub 12.714 km.

Gambar 5. Skydivers pada ketinggian tertentu
Gambar 5. Skydivers pada ketinggian tertentu

Oleh karena Bumi tidak tepat berbentuk bola, atau dengan kata lain jari jari permukaan Bumi (r) sedikit berbeda dari suatu tempat ke tempat lain, maka besar percepatan gravitasi yang tergantung pada jari-jari r juga akan berbeda sedikit. Inilah yang menyebabkan perbedaan percepatan gravitasi di berbagai tempat pada permukaan Bumi.

Jari-jari permukaan Bumi di kutub (r) adalah yang terkecil, dan karena percepatan gravitasi g sebanding dengan 1/r2, maka kutub akan memiliki percepatan gravitasi terbesar. Sebaliknya, karena jari-jari permukaan Bumi di khatulistiwa adalah yang terbesar, maka khatulistiwa akan memiliki percepatan.

Bagaimana dengan Percepatan Gravitasi pada Ketinggian Tertentu di atas Permukaan Bumi?

Misalkan titik A adalah tempat pada permukaan bumi dan titik B adalah tempat pada ketinggian h di atas permukaan bumi.

blank
Gambar 9. Percepatan garvitasi benda setinggi h

Nilai perbandingan percepatan gravitasi di B dan A adalah:

blank

Dengan = percepatan gravitasi pada ketinggian h di atas permukaan Bumi;  = percepatan gravitasi pada permukaan Bumi (biasanya bernilai 9,8 m/s2); dan R = jari-jari Bumi berkisar 6,370 km. Sebagai aplikasi persamaan diatas, percepatan gravitasi pada ketinggian h = 1 km di atas permukaan Bumi adalah

blank

Perbandingan Percepatan Gravitasi Dua Buah Planet

Misalkan kita akan membandingkan percepatan gravitasi antara sebuah planet (gp) dengan percepatan gravitasi bumi (gb). Tentu saja kita akan menggunakan persamaan (2-6). Dengan demikian

blank

Contoh soal :

Perbandingan massa planet A dan B adalah 2 : 3 sedangkan perbandingan jari-jari planet A dan B adalah 1 : 2. Jika berat benda di planet A adalah w maka berat benda tersebut di planet B adalah ….

blank

Potensial Gravitasi

Potensial gravitasi erat kaitannya dengan energi potensial gravitasi, yaitu energi yang berkaitan dengan posisi planet dan satelit . Energi potensial gravitasi benda yang posisinya sangat jauh dari planet (jarak r = ~ dari pusat planet) adalah nol. Dengan kata lain, gaya tarik gravitasi planet pada benda yang sangat jauh (r = ~) bisa diabaikan. Roket yang kita luncurkan dari bumi memanjat medan gravitasi planet dan ia perlu meningkatkan energi potensial gravitasinya ke nol agar ia bisa lepas dari medan gravitasi Bumi. Pada permukaan Bumi, energi potensial gravitasi adalah negatif sehingga roket perlu melakukan usaha untuk memanjat medan gravitasi menuju ke energi potensial gravitasi nol.

Potensial gravitasi (lambang V) suatu titik dalam suatu medan gravitasi didefinisikan sebagai energi potensial gravitasi per satuan massa dari sebuah massa uji kecil yang ditempatkan pada titik itu. Ini sama dengan usaha yang dilakukan per satuan massa dari sebuah massa uji dari suatu titik ke titik yang sangat jauh. Bagaimanakah rumus potensial gravitasi? Energi potensial gravitasi dinyatakan dengan :

blank

Sejarah Hukum Kepler

Hukum Kepler ditemukan oleh seorang matematikawan yang juga merupakan seorang astronom Jerman yang bernama Johannes Kepler (1571-1630). Penemuannya didasari oleh data yang diamati oleh Tycho Brahe (1546-1601), seorang astronom terkenal dari Denmark.

Pada tahun 1596 Kepler menerbitkan buku pertamanya di bidang astronomi dengan judul The Mysteri of the Universe. Dalam buku itu ia memaparkan kekurangan dari kedua model diatas yakni tiada keselarasan antara lintasan- lintasan orbit planet dengan data pengamatan Tycho Brahe. Oleh sebab itu Kepler meninggalkan model Copernicus juga Ptolemeus lalu mencari model baru. Pada tahun 1609, barulah ditemukan bentuk orbit yang cocok dengan data pengamatan Brahe, yakni bentuk elips. Kemudian penemuannya tersebut dipublikasikan dalam bukunya yang berjudul Astronomia Nova yang juga disertai hukum keduanya. Sedangkan hukum ketiga Kepler tertulis dalam Harmonices Mundi yang dipublikasikan sepuluh tahun kemudian.

Fungsi Hukum Kepler

Fungsi hukum Kepler di kehidupan modern yakni digunakan untuk memperkirakan lintasan planet dan satelit atau benda luar angkasa  lainnya yang mengorbit Matahari seperti asteroid atau planet luar yang belum ditemukan semasa Kepler hidup. Hukum ini juga dipakai pada pengorbitan lainnya selain matahari. Seperti bulan yang mengorbit bumi. Bahkan saat ini dengan memakai dasar dari hukum Kepler ditemukan sebuah benda baru yang mengorbit bumi selain bulan. Benda ini adalah sebuah asteroid yang berukuran 490 kaki (150 meter) yang dijuluki dengan Asteroid 2014 OL339. Asteroid berada cukup dekat dengan bumi sehingga terlihat seperti satelitnya. Asteroid tersebut memiliki orbit elips. Ia membutuhkan waktu 364,92 hari untuk mengelilingi Matahari. Hampir sama dengan bumi yang memiliki periode 365,25 hari.

Hukum Pertama Kepler

Hukum Pertama Kepler berbunyi : “ Semua planet bergerak  mengeliling matahari dengan lintasan berbentuk elips dan matahari terletak pada saah satu titik fokus elips tersebut”. Bentuk lintasan matahari dan planet berdasarkan Hukum Pertama Kepler digambarkan sebagai berikut :

Gambar 10. Bentuk Lintasan Matahari dan Planet
Gambar 10. Bentuk Lintasan Matahari dan Planet

Hukum Kedua Kepler

Hukum pertama Kepler sukses menyatakan bentuk orbit planet, tetapi gagal memperkirakan posisi planet dan satelit pada suatu saat. Menyadari hal itu Kepler akhirnya menemukan hukum kedua yang berbunyi : “ Suatu garis khayal yang menghubungkan pusat matahati dengan pusat planet akan menyapu luas daerah yang sama dalam selang waktu yang sama”. Berikut gambar posisi planet setiap saat berdasarkan Hukum Kedua Kepler :

blank
Gambar 11. Posisi Planet Setiap Saat

Waktu yang dibutuhkan planet untuk bergerak dari t1 ke t2  = t1 ke t2  , maka luas A1 = A2 . Hal ini terjadi karena saat mengelilingi matahari laju planet terbesar terjadi pada saat planet dan satelit berada dalam posisi terdekat dari matahari ( Perihelium) dan laju terkecil terjadi saat planet berada dalam posisi terjauh dari matahari (Apehelium).

Hukum Ketiga Kepler

Hukum Ketiga Kepler berbunyi: “Perbandingan kuadrat periode terhadap pangkat tiga dari setengah sumbu panjang elips adalah sama untuk semua planet”. Berikut gambar Hukum Ketiga Kepler :

blank
Gambar 12. Lintasan Perioda dan Jari – Jari lintasan Planet
blank

Planet  – planet dan satelit bergerak mengitari matahari dalam lintasan elips sangat dekat bentuknya ke bentuk lingkaran. Oleh karena itu r dalam hukum ketiga Kepler dapat sama dengan jarak antara planet dan matahari atau jari – jari orbit. Nilai tetapan (k) untuk setiap planet di galaksi bima sakti terdapat pada Tabel 1 sebagai berikut :

PlanetJarak Rata-Rata Dari Matahari r(106 km)Petiode T (Tahun Bumi) (1024 km3/th2)
Merkurius57,90,2413,34
Venus108,20,6153,35
Bumi149,61,03,35
Mars227,91,883,35
Jupiter778,311,863,35
Saturnus142729,53,34
Uranus287084,03,35
Neptunus44971653,34
Tabel 1. Nilai Tetapan (K) Untuk Setiap Planet Di Galaksi Bima Sakti

Kesesuaian Hukum Kepler Dengan Hukum Gravitasi Newton

Dalam membuktikan Hukum Kedua Kepler perhatikan skema berikut.

blank
Gambar 13. Skema Hukum Kedua Kepler

Dari skema terdapat beberapa hal yang perlu

  • Kecepatan planet dan satelit saat itu adalah v dan menyinggung lintasan.
  • Jika planet bergerak lurus mengikuti arah kecepatan, maka jarak tempuh planet selama selang waktu ∆t adalah v∆t .
  • Tetapi karena ada tarikan matahari, mata lintasan planet membelok mengikuti lengkungan ellips. Akibatnya, selama selang waktu ∆t, planet hanya menempuh jarak lengkung ellips yang panjangnya kira-kira sama dengan v∆t sinθ . Kedua panjang tersebut menjadi persis sama jika diambil ∆t mendekati nol. Di sini θ adalah sudut yang dibentuk oleh vektor jari-jari dengan vektor kecepatan planet.
  • Daerah yang disapu planet berbentuk segitiga. Panjang alas segi tiga kira-kira sama dengan vt sinθ dan tingginya kira-kira sama dengan jari-jari orbit planet r.

Dengan demikian, luas daerah yang disapu planet selama ∆t adalah :

blank

Momentum sudut planet mengelilingi matahari konstan, sebagai berikut :

blank

Dengan mensubtitusikan persamaan momentum sudut ke dalam persamaan luas daerah tersapu planet maka :

blank

Karena L konstan untuk tiap planet maka persamaan (8.25) menyatakan bahwa untuk satu planet, luas daerah yang disapu berbanding lurus dengan selang waktu. Dengan perkataan lain, pada selang waktu yang sama, luas daerah yang disapu garis hubung planet dengan matahari selalu sama. Ini adalah ungkapan Hukum Kedua Kepler.

Pembuktian Hukum Ketiga Kepler

Untuk membuktikan Hukum Ketiga Kepler, kita anggap lintasan planet sekitar matahari berbentuk lingkaran. Hal ini tidak tertalu salah, karenawalaupun lintasan planet sekitar matahari berbentuk ellips, namun ellips yang terbentuk sangat mendekati bentuk lingkaran. Gaya gravitasi matahari pada planet adalah F =GMm/r2, dengan M massa matahari, m massa planet, r jarak matahati-planet. Gaya ini berperan sebagai gaya sentripetal pada planet sehingga

blank

Ruas kanan persamaan hanya bergantung pada massa matahari. Jadi T2/r3 akan sama untuk semua planet, sesuai dengan Hukum Ketiga Kepler. Dengan memasukkan massa matahari dan konstanta gravitasi maka nilai di ruas kanan persamaan di atas adalah 2,97 x 10-20 s2m-3.

Hukum Kepler tidak hanya berlaku bagi planet dan satelit yang mengitari matahari, termasuk yang buatan manusia yang mengitari bumi. Intinya adalah Hukum Kepler berlaku bagi semua benda baik planet dan satelit yang mengorbit benda lain di bawah pengarus gaya tarik yang berbanding terbalik dengan kuadrat jarak. Dengan demikian, Hukum Kepler juga berlaku bagi elektron yang mengitari inti pada atom karena berada di bawah pengarus Gaya Coulomb yang memiliki bentuk serupa dengan Hukum Gravitasi.

Gerak Planet Dan Kecepatan Planet

Pada pertemuan sebelumnya kita sudah mempelajari tentang hukum gravitasi dan Hukum Kepler. Kedua hukum ini, dapat kita gunakan dalam mengamati pergerakan planet dalam tata surya. Hukum Pertama Kepler menyatakan bahwa semua planet bergerak  mengeliling matahari dengan lintasan berbentuk elips dan matahari terletak pada saah satu titik fokus elips tersebut. Berarti dapat kita ketahui bahwa semua planet bergerak mengitari matahari.

planet dan satelit bisa mengitari matahari karena sebenarnya planet memiliki kecepatannya sendiri (kecepatan linier orbital). Karena adanya gaya gravitasi matahari, planet secara alami akan bergerak lurus akan membelokkan geraknya terus menerus oleh gravitasi matahari. Kecepatan planet besarnya tidak berubah-ubah, tetapi arahnya selalu berubah. Oleh sebab itu planet mengalami percepatan sentripetal akibat gaya gravitasi matahari yang bertindak sebagai percepatan sentripetalnya. Adanya percepatan sentripetal ini menyebakan planet tidak jatuh ke matahari.

blank
Gambar 14. Analisis Gaya Sentripetal Planet – Matahari

Hukum Ketiga Kepler T2 / r3 = k  dari analisis data tanpa adanya penjelasan dari k secara matematis. Dengan munculnya Hukum Gravitasi Newton, maka Hukum Ketiga Kepler dapat terbukti kebenarannya. Newton memporoleh nilai k dengan cara menyamakan gaya gravitasi dengan gaya sentripetal pada planet dan satelit. Persamaan nya telah terbukti pada materi sebelumnya mengenai kesesuaian Hukum Ketiga Kepler tentang gerak planet

blank

Kecepatan Planet

Seperti yang sudah jelas sebelumnya bahwa planet memiliki kecepatan saat mengorbit matahari. Kita dapat menetukan kecepatan planet dengan cara

blank

Kecepatan Satelit Mengorbit Bumi

Suatu benda yang bergerak mengelilingi benda lain yang bermassa lebih besar adalah planet dan satelit, misalnya bulan adalah satelit bumi. Sekarang banyak satelit buatan untuk keperluan komunikasi, militer, dan riset teknologi. Untuk menghitung kecepatan satelit dapat menggunakan kesesuaian hukum gravitasi Newton dengan Hukum ketiga Kepler. Anggap suatu satelit bermassa m bergerak melingkar mengelilingi bumi pada ketinggian h dari permukaan bumi. Massa bumi M dan jari-jari bumi R. Anda tinjau gerakan satelit dari pengamat di bumi. Di sini gaya yang bekerja pada satelit adalah gaya

blank

Menghitung Jarak Orbit Satelit Geostasioner

Apabila satelit berada pada jarak r dari pusat bumi, maka kelajuan satelit saat mengorbit bumi dapat dengan menyamakan gaya gravitasi satelit dan gaya sentripetalnya.

blank
blank

T adalah periode satelit mengelilingi Bumi, yang besarnya sama dengan periode rotasi bumi. T = 1 hari = 24 jam = 86.400 sekon

blank

Kecepatan Lepas

Jadi ketinggian satelit adalah 4,23 x 107 m dari pusat bumi atau 36.000 km di atas permukaan bumi. Kecepatan lepas adalah kecepatan minimum suatu benda agar saat benda tersebut terlemparkan ke atas tidak dapat kembali lagi. Kecepatan lepas menempatkan satelit buatan pada orbitnya atau pesawat ruang angkasa. Besarnya kecepatan lepas suatu benda sangat erat kaitannya dengan energi potensial gravitasi yang terjadi oleh benda tersebut. Besar kecepatan lepas dari hukum kekekalan energi adalah :

blank

Kecepatan Lepas

Jadi ketinggian satelit adalah 4,23 x 107 m dari pusat bumi atau 36.000 km di atas permukaan bumi. Kecepatan lepas adalah kecepatan minimum suatu benda agar saat benda tersebut dilemparkan ke atas tidak dapat kembali lagi. Kecepatan lepas sangat dibutuhkan untuk menempatkan satelit buatan pada orbitnya atau pesawat ruang angkasa. Besarnya kecepatan lepas yang diperlukan oleh suatu benda sangat erat kaitannya dengan energi potensial gravitasi yang dialami oleh benda tersebut baik palnet dan satelit. Besar kecepatan lepas dirumuskan dari hukum kekekalan energy.

REFERENSI :

Bob Foster.2006. Fisika Terpadu Untuk SMA/MA Kelas XI Semester1.Erlangga:
Jakarta

Marthen Kanginan.2014.Fisika 2 Untuk SMA/MA Kelas XI.Erlangga:Jakarta.

Setya Nurachmandani.2009. Fisika 2 Untuk SMA/MA Kelas X KTSP.BSE.Pusat Perbukuan Departemen Pendidikan Nasional.

Suparno tri widodo. 2009. Panduan Pembelajaran Fisika Kelas X Untuk SMA dan MA. Jakarta: Pusat Perbukuan Departemen Pendidikan Nasional

Muhammad parchani Rasyid. 2013. Buku Guru Kajian Konsep Fisika 1 Untuk Kelas X SMA dan MA. Solo: PT Tiga Serangkai Pustaka Mandiri

Buku Fisika untuk SMA X KTSP 2006

Setelah selesai membaca, yuk berikan artikel ini penilaian!

Klik berdasarkan jumlah bintang untuk menilai!

Rata-rata nilai 0 / 5. Banyaknya vote: 0

Belum ada yang menilai! Yuk jadi yang pertama kali menilai!

Baca juga:
Muhammad Basir
Latest posts by Muhammad Basir (see all)
Artikel Berhubungan:

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *